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A practical representation of the thermodynamic properties and the transport 
coefficients related to diffusion, heat conduction, and their cross-processes in 
pure fluids and binary mixtures near the liquid-vapor critical line is developed. 
Crossover equations [or the critical enhancement of those coefficients incor- 
porate the scaling laws near the critical point and are transformed to the regular 
background far away from the critical point. The crossover behavior of the 
thermal conductivity and the thermal diffusion ratio in binary mixtures is also 
discussed. A comparison is made with thermal-conductivity data Ibr pure 
carbon dioxide, pure ethane, and carbon dioxide add ethane mixtures. 
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1. I N T R O D U C T I O N  

It is well k n o w n  tha t  the state of  a fluid near  the cri t ical  po in t  is charac-  
ter ized by a n o m a l o u s  large f luctuat ions  of  the o rder  p a r a m e t e r  [ 1, 2] .  The 
intensi ty  of  these f luctuat ions  diverges at the cri t ical  point .  As a conse-  
quence, bo th  the t h e r m o d y n a m i c  surface and the t r anspo r t  p roper t i e s  of 
fluids exhibi t  the s ingular i t ies  at  the cri t ical  point .  The a sympto t i c  s ingular  
behav io r  of  the t h e r m o d y n a m i c  proper t ies  and  of  the kinet ic  coefficients 
re la ted  to diffusion, hea t  conduc t ion ,  and  their  cross-processes  in b ina ry  
mixtures  can be descr ibed  in terms of  scaling laws with  universal  exponents  
and  universal  scal ing funct ions [ 3 - 7 ] .  However ,  the val id i ty  of  these laws 
is res t r ic ted to, the near-vic in i ty  a round  the cri t ical  point .  On  the o ther  

Institute for Oil and Gas Research of the Russian Academy of Sciences, Leninsky Prospect 
63/2, Moscow 117917, Russia. 

"~ To whom correspondence should be addressed. 

1143 

0195-928X/97/0900-1143512.50/0 4 1997 Plenum Publishing Corporation 



1144 Kiselev and Kulikov 

hand, it has become evident that critical fluctuations are actually present in 
fluids over a very large range of temperatures and densities [8, 9]. In order 
to account for effects of these fluctuations on the equation of state and on 
the kinetic coefficients of fluids, it is necessary to consider the non- 
asymptotic critical behavior of the thermodynamic and transport proper- 
ties including the crossover to regular classical behavior far away fi'om the 
critical point. For one-component fluids this task is practically solved 
[8-14]. For binary mixtures the decoupled-mode calculations by Kiselev 
and co-workers [ 15-17], the recent renormalization-group calculations by 
Folk and Moser [18-20], and the mode-coupling results obtained by 
Luettmer-Strathmann and Sengers [21] not only confirm earlier 
asymptotic predictions, but also extend the description of the transport 
properties of binary mixtures into the crossover region. However, in Refs. 
15-17 and 21 the thermodynamic properties for carbon dioxide and ethane 
mixtures were calculated from the crossover equation of state of Jin et al. 
[22, 23], which has been obtained without account of the new C,.., data 
obtained by Magee [24] and P, p, T, x data obtained by Lau [25] over 
a wide range of the temperatures and densities. Moreover, the crossover 
model proposed by Luettmer-Strathmann and Sengers [ 21 ] represents a fit 
of their crossover equations to experimental thermal-conductivity data at 
separate compositions and isochores only and cannot be used for the 
calculation of the transport properties of carbon dioxide and ethane 
mixtures on the entire thermodynamic surface. 

It is the purpose of the present paper to describe the thermodynamic 
and transport properties of binary mixtures in a wide region around the 
critical point on the basis of the modern theory of critical phenomena. In 
calculating the thermodynamic properties for pure fluids and binary 
mixtures a new parametric crossover equation of state which incorporates 
the scaling laws asymptotically close to the critical point and transforms 
into the regular classical expansion far away from the critical point has 
been used [26]. In evaluating the crossover expressions for the kinetic coef- 
ficients in binary mixtures we use the decoupled-mode theory method 
originally introduced by Ferrell [27]. The crossover equations for the 
critical enhancements of the transport coefficients is developed by incor- 
porating a finite cutoff wave number and time-dependent correlation func- 
tions of the order parameter and the entropy into the decoupled-mode 
theory integrals. This study has led us to introduce some modifications in 
the simple crossover model obtained earlier by Kiselev and Kulikov [ 15]. 
It is shown that the correct regular behavior of the transport coefficients is 
provided by the redefinition of the correlation length of the order- 
parameter fluctuations. In the vicinity of the critical point the crossover 
expressions for the critical enhancements of the transport coefficients in a 
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binary mixture incorporate the scaling laws and reproduce the asymptotic 
expressions obtained earlier by Mistura [4, 5]. Far away from the critical 
point the crossover expressions transform into their regular background 
parts. The crossover expressions for the thermal conductivity and the 
thermal-diffusion ratio in binary mixtures are also considered. 

We proceed as follows. In Section 2, we formulate the crossover equa- 
tions for the Onsager kinetic coefficients. In Section 3, we analyze on this 
basis the crossover behavior of the thermal conductivity and the thermal- 
diffusion ratio near the liquid-vapor critical point of binary mixtures. 
A new parametric crossover equation of state for mixtures of carbon 
dioxide and ethane and a comparison with experimental data in the one- 
and two-phase regions are discussed in Section 4. In Section 5, we discuss 
the role of the regular (background) parts of the kinetic coefficients in the 
crossover behavior of the thermal conductivity of mixtures and propose 
simple expressions for calculating these coefficients in mixtures of carbon 
dioxide and ethane. A comparison with experimental thermal-conductivity 
data for pure carbon dioxide, pure ethane, and carbon dioxide and ethane 
mixtures in the critical region is given in Section 6. In Section 7, we discuss 
our results. 

2. CROSSOVER EQUATIONS FOR THE KINETIC COEFFICIENTS 

The Onsager expressions for the diffusion current ~t and heat current 
~ in binary mixtures read [28] 

f, ,= - ~  V,,-/~VT (1) 

J , , =  - ~ T V / ~  - y' V T  + l J a  (2) 

where T is the temperature, p =/L2--/I t is the chemical potential of the 
mixture, and ~, fl, and ~; are Onsager kinetic coefficients. Mode-coupling 
calculations performed by Gorodetskii and Giterman [3] and Mistura 
[4, 5] show that, asymptotically close to the critical point, the Onsager 
kinetic coefficients diverge as the thermal conductivity of a one-component 
fluid, 

k~Tp(Ox) 
Afl=fl--flb-- 6rcq~ -~ p,~, (4) 

k~Tp(aS) (5) 
AY=Y--)~b-- 6m/~ O-T p,,, 
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where q is the shear viscosity, p the density, x = N 2 / ( N  ~ +N2) the mole 
fraction of the second component, S the molar entropy of the mixture, 
the equilibrium correlation length, kn Boltzmann's constant, and the sub- 
script "b" denotes the background part of the kinetic coefficients, which is 
an analytic function of the concentration, temperature, and density. The 
asymptotic equations, Eqs. (3)-(5), are valid only over an extremely small 
range of temperatures and densities around the critical point. In order to 
consider the crossover behavior of the transport coefficient in binary 
mixtures, it is convenient to start from the correlation-function expressions 
also known as "Kubo formulas," 

1 fd~fdt<f,,(O, 0)f,/(f, t)) (6) 8 - 6k B T 

1 f d? f dt(ZA0, 0) f i -  6kn T---~ 2 fs(~', t) ) (7) 

1 fdV. fdt(fs(O,O) fs.(?.,t)) (8) ~7 - 6kB T - - - - -5  

where fa and f.s. are the microscopic diffusion and heat currents. Since the 
concentration and entropy density are slow variables near a critical point, 
they may treated as independent from the velocity fluctuations in the 
current--current correlation functions. Iff~ = p 6x~ and fs  = Tp 6S~ (where 
gx and 6S denote the deviations of concentration and local entropy from 
the equilibrium values, and ~" is a velocity), Eqs. (6)-(8) transform to 

P~- d f f  dt(Sx(O,O) c~x(f,t))(~(O,O)~(~',t)) 
d~ = 6k B T 

(9) 

p2 dVf dt(6x(O, O) 3S(F, t))(6(O, 0) ~'(~, t))  Aft = 6kB T (10) 

p2 
A~ =6-~B f di: f dt( ~S(O, O) 3S(tZ t) ) ( ~(0, O) ~(i:, t) ) (11) 

Thus the correlation functions for the fluctuating currents have been fac- 
torized, which is referred to as the "decoupled-mode" approximation [27], 
by means of which the correlation functions become simply the products of 
the correlation functions of the individual fluctuating variables. In order to 
establish the behavior of the velocity correlations we may restrict ourselves 
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to linearized hydrodynamics equation. In this case we have, for the 
velocity-velocity correlation function [ 1, 28], 

( r2) (~(0, O) ~(~, t)) =--kBT ~ 1  exp -~v~ 
4p x/(nvt) 3 

(12) 

with v = q/p, and where q is a high-frequency shear viscosity which is finite 
at the critical point [27]. Very close to the critical point the relaxation 
time of the fluctuations is extremely large, and in a zero-order approxima- 
tion we may ignore the time dependence of the correlations of the concen- 
tration and entropy on the right-hand side of Eqs. (9)-(11) and replace 
them with the corresponding static correlation functions. With the 
Ornstein-Zernike approximation for the static correlation function of the 
order parameter 

G(k) = ([q~12) _ kBT (Sx) (13) 
[ l + ( k ~ ) 2 ] P  ~ P,r 

(where ~o ~: is a Fourier component of the order parameter at wave vector k7), 
Eqs. (9)-(11) with account of Eq. (12) are simply transformed into the 
asymptotic expressions for the kinetic coefficients in the form of 
Eqs. (3)-(5). In order to obtain the crossover expressions for the kinetic 
coefficients, the time-dependent correlation functions for the concentration 
and entropy in Eqs, (9)-(11) should be considered. Since at the critical 
point the most slowly relaxing variable is the order parameter, first we con- 
sider the time dependence of the order parameter. For the conserved order 
parameter the equation of motion has the form of a linear Langevin 
equation [ 2], 

=---; +((V, t) 
Ot p- 

(14) 

where ~(~', t) is a Gaussian noise source, and the effective Hamiltonian of 
the system near the critical point can be written in the Landau-Ginzburg 
form [1],  

f C LI H =  d~" a z  "q-~(V~0)2-]-~(~ 4 (15) 

where r = T/Tc - 1 is the dimensionless deviation of the temperature from 
the critical temperature To, and a, c, and u are positive constants. The term 

~o 4 in Eq. (15) takes into account an interaction between fluctuations of 
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the order parameter. This term plays an essential role in the calculation of 
the critical exponents which determine the asymptotic scaling behavior of 
the thermodynamic properties of the system near the second-order phase 
transition. For this purpose it is necessary to apply the renormalization- 
group method [2],  which makes Eq. (14) too complicated for the further 
analysis. As long as we are interested in simple crossover expressions con- 
necting the thermodynamic and transport properties of binary mixtures, we 
consider the solution of Eq. (14) in the Gaussian approximation (u=0) .  
However, in the final expressions we use for all thermodynamic quantities 
the scaled equations with the theoretical values of the critical exponents. 

In terms of Fourier components, the solution of Eq. (14) reads 

it 6q~= e-~rj,-'k-'~,,~+,*-'~, "~F,~(t')dt' (16) 
s 

which, together with the normalization 

(r .~-,( t' ) ) = 2k t3 To~ keOk- " x~, d( t -- t' ) (17) 

yields 

( k~ T~Fk2t'~ 
(~q~,(O)cS~ok~(t))=G(k)ex p p2G(k) j~-. ~, (18) 

where G(k) is the Ornstein-Zernike correlation function as given by 
Eq. (13) with ~ =~/cp- ~(0.x-/0/~)e. 7" the correlation length in this approxi- 
mation. Substitution of Eqs. (18) and (12) into Eq. (9) and integration over 
the variables F and t yield 

[ G(k) 
- P q"dk (19) A~-1~3~3~, k2[v+kj~T~fp -G (k)] 

The integral is to be evaluated over all k up to the maximum cutoff 
wave number q ~ =  ]cTD I first introduced by Pert and Ferrell [29]. The 
k-dependent transport coefficient 0~/;, similar to the transport coefficient ~, 
can be represented in the form 

~ F =  zl0~(k) q- 0~b(k ) = dR(k) + 0~b(0) (20) 

where we ignore the k dependence of the background part 0~b(k ) and 
consider it in the hydrodynamic limit 02b(k}=0~b(0)=0~ b. The transport 
coefficient 

J~(k) = zlD(k) pz(k) (21) 
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where we have introduced the notation z(k) = (Ox/0/~)e, r/( 1 + k2~ -'). The 
k-dependent diffusion coefficient AD(k), similar to the thermal diffusivity 
ADT(k) of the one-component fluids, in the asymptotic critical region in 
the limit qD ~ c~ satisfies an equation of the form 

A kl~ T D(k) = 6-~q~ OK(k~) (22) 

where ~K(---)=(;~Z2)[1-k-Z2-+-(23--- -" I)arctan(z)] is the so-called 
Kawasaki function [30, 31 ]. Then Eq. (19), with account of Eqs. (13) and 
(22), reads 

A~=6~tlgk~Tp(Ox)~ e.r Q~(qi~g) (23) 

where 

2 if/I),~ d~ (2~(q,)~) = -  [ ( ~/(Olt'~ ) ]  (24) 
g ' ( l + z  2) 1+ \OxJe.l-[l+y~ 

with the dynamical scaling function 

a(z)=g2k(z)/(l+z ~) (25) 

and 

Yo = 6/~r]~0~ b ~ p. r (26) 

Because of the nontrivial dependence of the dynamical scaling function a(z) 
on/~ the integral in Eq. (24) can be evaluated rigorously only numerically. 
However, as shown by Kiselev and Kulikov [ 15 ], a reasonable approximation 
for this integral can be obtained even if we ignore the k dependence of the 
dynamical function a(z) in Eq. (24) and consider it only at the constant 
value of the wave number k=k,)=O.lqo. Integration of Eq. (24) in this 
case yields 

2 E ~(qD~)  = -  arctan(qD~) 
7~ 

1 qD S ] arctan (27) 
X/I+)'DqD~ X/1 + Z q D ~ J  
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with 

6zcq 2 (28) 
YD = kB TpqD(ao + Yo i) 

where ao = a(kD~) with kD = 0.1qD. 
In order to obtain the crossover equations for the kinetic coefficients 

,J/~ and z1~ similar to the kinetic coefficient J0~, we need to know the time- 
dependent correlation functions (c~x6S) and (OSOS). In the Gaussian 
approximation the local entropy can be represented in the form [ 1, 2] 

a ~ .  ( O B ) ~ o ( F , t )  (29) S(F, t)= -~--~ cp-(r, t) + --~ P..,. 

where the coefficient a, critical temperature T c, and derivative (OB/OT)e..,. 
are functions of P. This definition of the local entropy corresponds exactly 
to the scalar extra field q(F) introduced by Siggia et al. in their renormaliza- 
tion-group treatment [33]. With account of Eq. (29), the corresponding 
expressions for the correlation functions read 

O/.t) (6cp(O, O) 6qo(F, t)) (30) ( a x ( 0 ,  0) as(7,  t ) )  = b-T p, ,. 

=(a.? 
<6S(0, O) JS(F, t)> \OT,/p,.,. <6cp(O, O) aq~(F, t)> 

a 2 
q- ~ < a(p2(O, O) 6fp2(r. l)> (31) 

Substitution of Eq. (30) into Eq. (10) yields 

kBTp Ox 
zl/~ = 6 ~  (~-~),, l s ~ ) (32) 

where the crossover function s coincides with the crossover function 
for J~ 

s ) = s O~) (33) 

Equation (11) for zt~, with account of Eq. (31), takes the form 

A~ 
= 6ntl~ \OTJe..,.\ e. rf2~'(q~ ~ Ob'(q~ (34) 
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where [2~.(qD~)~ (6q~ 6q~) and, as in the previous case, coincides with the 
crossover function for zl0~, 

Q,,(qD4) = ~2:,(qD~) (35) 

The crossover function ,Qt~,(qD~)~ (0~ 02 6~ 02) and a direct integration of 
Eq. ( I I )  yield a slight logarithmic divergence, [21r,~ln(qD~ ). This non- 
physical divergence is a consequence of the Gaussian approximation 
adopted in this paper. The static correlation function (6cp 2 ~ , 2 )  is propor- 
tional to the isobaric specific heat capacity 

Ce..,. ~ f < 6q~2(0) 6~02(F)) dF (36) 

which diverges weakly as r -~ at a consolute critical point, whereas in the 
Gaussian approximation the critical exponent e = 0 .  Thus within the 
Gaussian approximation we cannot obtain the correct result for the cross- 
over function [2~, from Eqs. (11) and (31) directly. However, in the limit 
x--* 0 the derivative (Ox/Olz)e. T ~ X ~ O, the specific heat capacity Cp, .,. of 
a binary mixture is transformed to the isobaric specific heat capacity Ce of 
the pure components, and as one can see from Eq. (34), the kinetic coef- 
ficient ,~ tends to the thermal conductivity 2 of the one-component fluids 
(~---, 2). 3 Thus in the limit of pure components the crossover function 
121~,(qo() has to transform to the crossover function of one-component 
fluids f2(qD~). It means that the actual form of the crossover function 
t21 ~ ' (qo()  can be derived from the mode-coupling equation for the thermal 
diffusivity of one-component fluids. The mode-coupling theory of critical 
dynamics yields the following integral for the singular contribution to the 
thermal diffusivity D r  = 2 / p C e  [30-32]: 

z/2(q) 
A D r ( q )  = - -  

p C e ( q )  

kB T f,m ,,..{- Ce(Ig-E[).] sineO 
=(2rc)3p'o k2~(k)lP+lg-ISI2D~(Ig-EI) 

(37) 

where A2 = 2 -  2b is the singular part of the thermal conductivity 2, 2b the 
regular or background part, and ~ the wave vector of the fluctuations, 

The crossover of the thermal conductivity of a binary mixture in the limit of pure 
components is discussed in more detail in Refs. 6, 7, and 15. 
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while O is the polar angle of k v with respect to 4. In the hydrodynamic limit 
(q ~ 0) and under the following assumptions, 

Cp(0) 
Cl,(k) l + ( k ~ )  e' q(k)=q(O), 

we obtain after integration 

.C2(qD~) =s ,.(q,~. ) 

D-r(k) = [A2(0 )a (k ,>~)+  2,,]/pCp(k) 

(38) 

with 

= - ~ arctan (39) al'ctan(qD~) ~ / I  + Y,DqDg ~/1 + ) ' , t ~ q , ~ /  

6rcq ~- (40) 
)'ID =kn Tpqt~(a, ' + ),U i) 

where ),~ = k~ TpCp.,/6rcq~.9,. with Cp., = T ( O g / 6 q T ) p . t , ,  and a,, = a(k~{). 
In the case )'~t>=),~ the crossover function 12(qD~) coincides again with 
the crossover function (2~(qt~4). 

As one can see fi'om Eqs. (27) and (39) the crossover functions .Q~ and 
(2 contain the correlation length as an argument. This means that the 
crossover behavior of the transport  coefficients of a binary mixture depends 
strongly on the definition of the correlation length. Equations (27) and (39) 
have been obtained in the Ornstein-Zernike approximation for the correla- 
tion function. In this approximation we took into account only the first 
term w.k-" in an expansion of the effective Hamiltonian of the system in 
powers of the wave vector k-. Near  the critical point the main contribution 
to the integral arises from components  with small values of the wave 
number; therefore, this approximation is substantiated. However, as we are 
interested in the crossover behavior of the kinetic coefficients, the next 
terms in the effective Hamiltonian have to be considered. In order to take 
into account a difference of the static correlation function of the order 
parameter  in the crossover region from its Ornstein-Zernike approximation,  
let us consider the effective Hamiltonian in the form 

f I "~ (ar~o2 +c(Vq~)2 +c~(Aq~)2)di~=~_~(az +ck2 +c~ k~) I ~ ] -  (41) H = ~  
~r 

The details of the calculations of the crossover function in this case are 
presented in the Appendix. The main result of these calculations is that we 
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can simply replace the Ornstein-Zernike correlation length in Eqs. (27) 
and (39) by the renormalized correlation length. 

Finally, the crossover expressions for the kinetic coefficients of a 
binary mixture can be written in the form 

6~rq~ ;,. r 

^ &Y 

(42) 

f2~(qD~) +/~. (43) 

61r11~ ~ ,,. r \OT/,, . ,  

where the crossover functions f2,(qD~) and g2(qD ~) are given by Eqs. (27) 
and (39) but with the renormalized correlation length 

kBTpqp'" f2(q,,~) + y,, 
6~rq~_ 

~ = ~ - o z [ l - ( I ~  ~ 2] 
\ g o z /  J (45) 

Here 

go• = G, ~ (46) 

corresponds to the Ornstein-Zernike approximation for the correlation 
length, d 0 and Fo are the amplitudes of the asymptotic power laws for the 
correlation length and reduced isomorphic compressibility 2 = P(OP/OP)r,;, 
p~p2 ,  respectively, and I, is a characteristic length, which is of the order 
of an average distance between particles. Asymptotically close to the criti- 
cal point qo(>> 1, the singular parts of the kinetic coefficients are much 
larger than the regular (background) parts ()q~ >> 1, )h > 1, YD ~YJD ~ 1 ), 
all crossover functions approach unity, and Eqs. (42)-(44) in the critical 
limit reduce to the asymptotic solution given by Eqs. (3)-(5). Far away 
from the critical point, i.e., q D ~  1, the crossover functions tend to zero 
(f2~ ---, s"2--. 0), and all kinetic coefficients approach their regular parts. 

3. THERMAL CONDUCTIVITY AND THERMODIFFUSION RATIO 

The thermal conductivity of the mixture 2 is defined by the equations 
[28] 

J , ,= 0, Jq = - 2  VT (47) 
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which, according to Eqs. (42)-(44), lead to the following expression for 
thermal conductivity of binary mixtures [ 15]' 

2 = ~ -  T fi2 - kB TpCe.x f2(qo~) + ~b/ITTQ(),) + ~b 
8 6nrl ~ 

(48) 

where the crossover function f2~(qo~) appears only in the argument 

kBTp /i 
v--A~/0h,= y,,n~(qD~) - - 7 2  .,. 'n~(qD~) 
" 6nr/~otb 

(49) 

of the new crossover function 

y(  1 + 23,*) - (y*)-" 
Q(Y) = 1 + y (50) 

Here we have introduced the notations / i .x .=(O/i/OX)e,  T, /ir=(O/i/OT)e ..... 
and y* = fib//i r~ - Thus the crossover behavior of the thermal conductivity 
of a binary mixture in the critical region is determined by the function 
Q(y). Far away from the critical point, where the singular part of the 
kinetic coefficient A8 is negligibly small compared with the regular part ~b, 
or y ~ 1 ( q o ~  1, (2 ~ g2~ ,~ 1 ), the function Q(y)~- - ( y , ) 2  + (I + y,)2 y, 
and the thermal conductivity reads 

2~--kaTP[ce,,--Tflb(2+y*)/ir/i.,.']f2(qD~)+2h. . . 
6n~l~. ~b 

(51) 

") - I  where Ce.~, = Cp..,. + T/I>/I,. , and the regular (background) part 

)Lb = ~b --  ~b T / I T ( Y *  )2 = fib - -  Z t " b  ( 5 2 )  
8b 

Asymptotically close to the critical point, where the singular part A8 
is much larger than the regular part 07 b, the parameter y>> 1 (qD~>> 1, 
f2---f2~ ~- 1), function Q ( y ) -  1 + 2 y * - ( 1  +y,)2/y ,  and the thermal 
conductivity tends to its critical background value as 

2 ~ k B T P c p , .  _ _ ~ b ( l ^  + y , ) 2 T / i T + 2 c b  
6 n ~  Y 

(53) 
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At the critical point of binary mixtures the first two terms on the 
right-hand side of Eq. (53) are equal to zero ( C e . . , . / ~ o c r - ~ + " ~ 0 ,  
y -  ~ oc p.,.~ oc r ~ .... --* 0), and the thermal conductivity remains finite, 

lim ;t = ~-cb (54) 
r{ x) ~ 0 

where the critical background 

)]-cb = 2b  + TPT~b( 1 + y.)2 (55) 

is not equal to the regular part 2 b. 
In order to analyze the temperature dependence of the thermal 

conductivity of a binary mixture, let us consider the critical isochore. At 
the critical isochore p = pc(x) in the temperature region r(x),~ 1, where the 
asymptotic power laws ~ ~-~or-"  and kBTct.~. ~ ~-Fo~,r -r are valid, the 
condition y = 1 determines a characteristic temperature 

( pcFo, "~ /r ,' 
r D _~ \ 6 ; g r / ~ o 0 ~ b /  ( 5 6 )  

The temperature rD is equivalent to the characteristic temperature to 
introduced by Onuki [6] .  In the temperature range r D ,~ r ,~ 1 the specific 
heat capacity Cp.~, oc p.[~ oc r-r,  the parameter y ,~ 1, and the thermal 
conductivity of a binary mixture exhibits one-component-like behavior, 

2- -2b  --~ Const r -y+' '  (57) 

At temperatures r ,~ r t ) ,  the parameter y>> 1, and according to Eqs. (53) 
and (55), the singular part of the thermal conductivity of a binary mixture 
tends to a finite value at the critical point, 

/~ - - / ~ b  ~--- T/'tT0~b(1 + y , ) 2  _ Const r ~' " (58) 

In order to calculate the thermo- and barodiffusivity it is useful to 
represent the diffusion current in the following form [28 ]: 

Jd = --pD Vx - ~ . E  V T -  pDep VP (59) 

where the binary diffusion coefficient 

D =-/2.,. (60) 
P 
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the thermal-diffusion coefficient 

Dr=-T(~I ,T+f i )  (61) 
P 

and barodiffusivity 

D e  = P \ O p / T . . ,  (62) 

The thermodiffusion ratio with account of Eqs. (42), (43), and (61) 
can be represented in the form 

kT DT - D - T p T p . , . ' K ( y )  (63) 

with 

1 + y *  
g(y )  = - -  (64) 

1 + y  

In the critical region, where y>> 1 ( r ~  rD), /LT remains constant, and the 
thermal-diffusion ratio at the critical isochore diverges as the correlation 
length, 

k T ~ 6n~b 
k a p  ktT(1 + y*)  ~ r " (65) 

and as l l , .  ~ when 3, ,~ 1 (r >> to),  

kT~--- f f lTl l .( .  I(1 - ' { -y*)~T ~' (66) 

These predictions for the temperature dependencies of the thermal 
conductivity and the thermal-diffusion ratio at the critical isochore of a 
binary mixture are consistent with Onuki's predictions [6] and are 
restricted to the region r(x) <~ 1, where the asymptotic scaling laws for all 
thermodynamic quantities are valid. For fluids and fluid mixtures this 
region is restricted by the temperatures r~< 10 -3 [34, 35]; therefore, for 
the numerical analysis of experimental data the crossover expressions, 
Eqs. (48) and (63), together with the crossover equation of state for binary 
mixtures have to be used. 
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4. CROSSOVER FREE ENERGY FOR CARBON DIOXIDE AND 
ETHANE MIXTURES 

In the present paper we used the crossover model for the isomorphic 
free energy of binary mixtures recently obtained by Kiselev [26]. The 
isomorphic free-energy density of a binary mixture is given by 

p~l( T, p, 2) =-pA( T, p, x) -pp.,c( T, p, s (67) 

where pA( T, p, x) is the Helmholtz free-energy density of the mixture, and 
the isomorphic variable ~ is related to the field variable ~, first introduced 
by Leung and Griffiths [36], by the relation 

eI~/RT 
.~= I - (  I q-e j'/RT ( 6 8 )  

The thermodynamic equation 

aA) 1 
x=-.~(1-.~) ~ ~.,,R---T (69) 

(where R is the universal gas constant) provides a relation between the 
concentration x and the isomorphic variable .~. At fixed .~ the isomorphic 
free energy p,4 is the same function of r and p as the Helmholtz free-energy 
density of a one-component fluid, 

pA( T, p, .'~) = ~:r2 _ ~R~(q) [ ~uo(0) 
Rpco Too L 

4 ] 
+ ~ ?F"R-'7'(q) ~,(0) 

i = l  

�9 = P Co Rpco  Too 

p T  
+ - -  [ln(1 -- .~) + rh,~] (70) 

Pco Too 

T -  T J2 )  r = r( 1 - b202) (71) 
Td?Z) 

Llp P-Pc(r162 (72) 
pc(.~) 

where ~, fl, and At are universal critical exponents, and b 2 is the universal 
linear-model parameter. The values of these universal constants are listed 
in Table I. The universal scaled functions ~ui(0) and the crossover function 

841,1,18 5-6 
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Table  !. Universa l  C o n s t a n t s  in the He lmhol t z  Free-Energy  Dens i ty  

co=0.110 

p = 0.325 
~ , = 2 - ~ - 2 f l =  1.24 

b 2 = (~ , -  2fl)/),( 1 - 2,6') = 1.359 

An = ~ u  =0.51 

A2 = zl, = 2Ai = 1.02 

A 3 =  A 4 =  )'+ fl - I =0 .565  

2 3 =  2 4 = , ~  ~ -  �89  

R(q) are the same as those in the parametric crossover model employed 
earlier by Kiselev [26], 

5 

~i(O) = ~'. oLijO j ( i = 0  ..... 4) (73) 
j =  0 

where ~t are universal constants, and 

R ( q ) = ( l +  q2 ,~2 
1 + qJ (74) 

where the variable q is related to the parametric variable r by 

q = (rg) I/z (75) 

As demonstrated in a previous publication [9],  the system-dependent 
coefficient g is proportional to the inverse Ginzburg number Gi. 

All system-dependent parameters in Eqs. (70)-(72) as well as the 
critical parameters Tc(~), pc(.'~), and Pc(-'~) are analytic functions of the 
isomorphic variable .~. For the critical parameters we use the same expres- 
sions as in our previous papers [26, 37], 

2 

Tc(.~:)=T~o(1-Yc)+T~t~+s ~ T~(1-Z.~y (76) 
i = 0  

2 

pc(.~)=pco(1-.~,)+ p~l.~ +.~(1-Yc) ~ p ; (1 -2 .~y  (77) 
i = 0  

2 

Pc(Y:)=Pco(1-.~)+P~t.~+.~(1-Yr ~ P,(1-2.-~)' (78) 
i = 0  

where the subscripts 0 and 1 correspond to the first and second com- 
ponents of the mixture, respectively. 
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In addition to Eqs. (76)-(78), we also adopted a so-ealled critical line 
condition which implies that a zero level of the chemical potential of a 
binary mixture can be chosen so that the isomorphic variable )7 = x along 
the whole critical line, including the one-component limits. For the ther- 
modynamic potential as given by Eqs. (70)-(72), the criticaMine condition 
can be written in the form 

Too dT~ drho 1 dP~ (Pco ~1 +fill T 2 
d2 Rpc Tc -~2 + \ p c ~ d2 

(79) 

In this case, along the whole critical line 2 = x, and 

To(2.) = To(x), p~(2) = pc(x), P~(2) = P~(x) (80) 

To specify the crossover equation for ,4(T, p, 2) of a binary mixture, 
we also need the system-dependent parameters c7~(2), k(2), h(2), g~(2), 
~(2), ~z(2), and ~]A-'~) as functions of the isomorphic variable 2. To repre- 
sent all these system-dependent parameters in Eqs. (70)-(72), designated 
7cA2), as functions of ~ we used an isomorphic generalization of the law of 
corresponding states [26, 37], which, for k and d,,  written in the form 

ki(2.) = kio + (kil -- kio) 2 + kl~ I~ AZc(2) (81) 

and, for all others coefficients, reads 

k, (2:) -  f ~  [ k i o + ( k i , - k , o ) 2 + k ~ t '  AZc(?,)] 
/'(P cO/cO 

(82) 

In Eqs. (81) and (82) k~t ~ are mixing coefficients, and 

A Z c ( 2 )  = Zc(:;:)-- Z,.,,~(.~) (83) 

is a difference between the actual compressibility factor of a mixture Zc(s = 
Pc(2)/Rp,:(2) To(2) and its ideal part Zcid(2)= Zoo(1 - - 2 ) +  Zc~,~. 

In the present work the coefficients Ti, p~, and Pi in Eqs. (76)-(78) 
and the mixing coefficients kli ~ were determined from a fit of Eqs. (70)-(72) 
to experimental thermodynamic-property data for carbon dioxide and 
ethane mixtures in the one-phase region. 

For pure ethane we adopted the same parameters as obtained by 
Kiselev [26], while for pure carbon dioxide all system-dependent 
parameters have been found from a fit of Eqs. (70)-(74) to the experi- 
mental P, p, T data obtained by Wagner and co-workers [38, 39], by 
Michels and Michels 1-40], by Holste et al. [41 ], and by Fenghour et al. 
[42]. The coefficients rh i, which determine the temperature behavior of the 
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T a b l e  I I .  System-Dependent Constants for Mixtures o t  C a r b o n  Dioxide and Ethane 

k , ,  CO_, k , .  C_~ H ~ k t ~', mixtures 

Critical a m p l i t u d e s  

k 1.2245 1.2015 2.9683 

d I - 0 . 9 2 2 1  0 .2977  - t45 .07  

a 22.0281 17.779 - 161.25 

c l - 6 ,0906  2 .9728 4902.  I 

c ,  6 .6229 12.776 0 

c~ - 11.773 - 18 . [25 - 3 9 7 2 . 8  

c4 12.122 I. 1248 49(}0.6 

C r o s s o v e r  parameter 

0.1477 1.3869 1100.5 

B a c k g r o u n d  coellicients 

A I - 7 . 0 1 9 8  - 6 . 4 1 5 5  16,762 

,4 ~ 19.138 20.847 - 1532.5 

,4~ 1.8125 3.2112 0 
Oll 0 0 - 0 . 6 2 9 6 3  

,'Ira I = m t l - m . ,  8 .5218 

Ill,  - 1 (I.094 - 18.136 1343.5 

nl 3 3 .1208 - 0 .1729  1209.2 

t114 0.5476 0 .1176  0 

M o l a r  nlass 

g .  tool  i 44.01 30.069 

specific heat capacity at the critical isochore, were found from a fit to the 
experimental C,. data obtained by Magee and Ely [43]. The values of all 
system-dependent constant for pure carbon dioxide and ethane are listed 
in Table II. A comparison with the experimental data is shown in Figs. 1 
and 2. Good agreement between experimental and calculated values of the 
pressure and the specific heat capacity is observed in the range of 
temperatures and densities bounded by 

0.995 T~ ~< T ~  1.4T~., 0.35p~ ~< p ~< 1.65p~. (84) 

To determine the system-dependent parameters in the crossover equa- 
tion for carbon dioxide and ethane mixtures, we used the following 
experimental information: 
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Fig. 1. Percentage deviations of the experimental pressures obtained by 
Wagner and co-workers [38, 39] (open trianglesl, by Michels and Michels 
[40] Ifilled triangles), by Holste et al. [41 ] Iopen squaresl, and by Fenghour 
and co-workers [42] (filled circlesl from values calculated with the crossover 
equation of state. 
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Fig. 2. The isochoric specilic heat capacity C, of carbon dioxide at 
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(i) experimental P-p-T-x data obtained by Weber [44] for three 
concentrations (0.26022, 0.50755, and 0.74834 mol fractions of 
ethane); 

(ii) experimental P-p-T-x data obtained by Lau [25] for four con- 
centrations (0.09633, 0.26022, 0.50755, and 0.74834 tool fractions 
of ethane); and 

(iii) experimental specific heat capacities obtained by Magee [24] 
for three concentrations (0.26022, 0.50755, and 0.74834 mol 
fractions of ethane). 

The values of the coefficients Ti, Pi, and Pi in Eqs. (76)-(78) for the 
critical parameters, as well as the mixing coefficients k~ j~ in the crossover 
equation of state, were determined from a fit to all sets of experimental 
P-p-T-x and specific heat capacities data simultaneously. As for pure 
fluids, we used the experimental data in the one-phase region only at tem- 
peratures T~> 0.995To(x). The values of the coefficients k~ t~ are presented in 
Table II, and the values of the coefficients Ti, p~, and P; for the critical 
parameters are listed in Table III. 

A comparison of the experimental P-p-T-x and C ...... data with the 
results of the calculations is shown in Figs. 3 and 4. One can see that in the 
range of temperatures 0.995To(x) ~< T~< 125T~(x) and densities 0.4pc(x) ~< 
p ~< 1.6pc(x), the crossover equation gives a good representation of the 
experimental P-p-T-x and C,,..,. data. 

T a b l e  II1.  C r i t i c a l - L i n e  P a r a m e t e r s  lbr M i x t u r e s  o f  C a r b o n  D i o x i d e  a n d  E t h a n e  

C r i t i c a l  C r i t i c a l  C r i t i c a l  

t e m p e r a t u r e  ( K ) d e n s i t y  ( m o l  - L - ~ ) p r e s s u r e  ( M P a  ) 

P u r e  CO_, 

T~,~ = 304 .136  P~o = 10.625 P~o = 7.3773 

C O 2 + C 2 H 6  

P u r e  C z  H6 

T~I = 305 .322  Pr = 6.8701 P~l = 4 .8718 

T o = - 5 4 . 4 4 1  Po = - 1.4657 Po  = 7.3773 

T I = - 1 5 . 7 1 5  P l  = - 3 . 9 2 0 7  • 10 - I  P i  = - I . 7 1 4 2  

T 2 = 4 .4935  P2 = - 7 - 0 0 2 4  • 10 - 2  P2  = - 1.5064 

T~ = 10.870 p 3 =  - 2 . 7 6 1 5  • 10 - I  P3 = - 4 . 9 3 6 7  • 10 - I  

T 4 = - 1 . 4 0 1 9  • 10 - 2  P4 = - 3 . 5 3 4 8  • I0  - t  P4 = 9 . 9 3 4 9  x 10 i 
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Fig. 3. Percentage deviations of experimental pressures for carbon dioxide and 
ethane mixtures from values calculated with the crossover equation of state at 
various concentrations of ethane. The filled symbols indicate the experimental 
data obtained by Weber [44],  the open symbols correspond to the experimental 
data obtained by Lau [25],  and pluses represent the values of densities 
calculated with the NISTI4 program [46]  at pressures and temperatures corre- 
sponding to the experimental specific hea t  c a p a c i t y  d a t a  of Magee [ 2 4 ] .  
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Even though all adjustable parameters have been found from a fit of 
Eqs. (70)-(72) to the experimental data in the one-phase region, we can 
also extrapolate our crossover model to represent the thermodynamic sur- 
face of carbon dioxide and ethane mixtures in the two-phase region down 
to temperatures about 10-15% below the critical temperatures. We applied 
our crossover model to calculate the thermodynamic properties in the 
two-phase region near the critical locus. For a comparison of our calcula- 
tions with experimental data the following experimental information was 
used: 

(i) experimental P -  x data of Fredenslund and Mollerup [45 ], 

(ii) experimental P - x  data of Ohgaki and Katayama [47], 

(iii) experimental P - x  data of Brown et al. [48], and 

(iv) experimental P - x  data of Wei et al. [49]. 
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Fig, 4. The isochoric specific heat capacity ( ' , . ,  of carbon dioxide and ethane mixtures at 
concentrations x = 0.74834, .v = 0.50755, and x = 0.26022 tool fraction of ethane as a function 
of temperature. The filled symbols indicate the experimental data obtained by Magee [24],  
and the open symbols represent values calculated with the crossover model. 

A comparison between the experimental data and the values calculated 
from our crossover model is shown in Fig. 5. Good agreement between 
experimental data and calculated values is observed down to a temperature 
of 263.15 K. Thus one can see that our new crossover equation of state for 
carbon dioxide and ethane mixtures is capable of representing the 
experimental data over a larger range of temperatures and densities than 
the crossover equation obtained earlier by Jin et al. [22, 23]. 

5. REGULAR PARTS OF THE TRANSPORT COEFFICIENTS 

Equations (48) and (42)-(44) for the transport coefficients in a binary 
mixture except the thermodynamic derivatives l t , . , / t r  and specific heat 
capacity Cv..,. contain also the viscosity and the regular (background) parts 
of the kinetic coefficients. The viscosity q in these equations represents a 
high-frequency shear viscosity which is an analytic function of the tem- 
perature, the density, and the concentration�9 In the present work, as in our 
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Fig. 5. Tile pressure composition diagram Ibr carbon dioxide and 
ethane mixtures. The symbols indicate experimental data obtained by 
Fredenslund and Mollerup [45], by Ohgaki and Katayama [47], by 
Brown eta]. [48]. and by Wei et al. [49]. The filled symbols indicate 
saturated liquid data. and the open symbols represent saturated vapor 
data. The dashed curve represents the critical locus, and the solid curves 
represent values calculated with the crossover model. 
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previous papers [ 15-17]. we used lbr the shear viscosity a corresponding- 
states correlation in the form 

[ q " ~ ( T ,  p)[  T~c"] ' 
v(r. p,.,-/= L 

(85) 

where M , , , ~  is a molecular mass of a mixture, To.,. and Pc,-are to be deter- 
mined from the Prausnitz and Gunn mixing rules [50, 51] 

To,.= ~ " T c n  P~.,. = R T ~ , .  ~ , n  x ,  x i z . ~  - -  (86) 
. - X i ~ c  , . ( i )  

i = 1  i = 1  i I P c  

and the critical compressibility thctor Z~c i~= P ~ i ) / R ~  , -c  c �9 The super- 
script i =  1 corresponds to pure carbon dioxide and i =  2 to pure ethane, 
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respectively. The viscosities qc~ and r/~21 of the pure components are 
written as 

rl,~(T,p) =t/o liq, T) +q~xc "-"} ( ~ ~,j ( i=  1, 2) (87) 

where q~o~(T) are the viscosities of the pure components in the limit p ~ 0, 
and ") q~x~(P) are the density-dependent excess viscosities [11, 13, 52] 

= ( 8 8 )  
k = l  

There are no experimental data or any theoretical prediction for the 
dependencies of the kinetic coefficients 0~ and /~ on the temperature, the 
density, and the concentration far away from the critical point, where these 
coefficients tend to their background parts 0~b and /~b, respectively. It is 
known only that even in the ideal-gas limit the binary diffusion coefficient 
D and the thermal-diffusion coefficient D r, related to the kinetic coef- 
ficients 0~b a n d  f i b  by Eqs. (60) and (61), are complex functions of the 
temperature, concentration, and molecular masses [53]. The primary con- 
centration dependence of these coefficients in the ideal-gas limit and in the 
dilute solutions is given by ~ x( 1 - x ) .  The background parts of the kinetic 
coefficients ~ and fl can be presented in the form [ 16, 17] 

8 b = 0~o( T, x) 

( p ~ k + ,  
+ x ( 1 - x )  ~ \~--~/ [~3,+O~3k+,(1--Zx)+~3,+z(1--2X) 2] (89) 

k = l  

+x(l-x) Y. \ ~ /  [~_~k+/~,k+,(l--Zx)+/3~k+2(l--2x)-'] (9O) 
k = l  

where the ideal-gas parts of the kinetic coefficients are given by 

~o - pD~ x(1 - x) (91) 
R T  

( x) 
]~o = RSo fl~ + xfl2 - In ~ (92) 

Here c~k and fl, (k~> 1) are system-dependent coefficients, and Do is the 
binary diffusion coefficient in the limit p ~ 0. In practice we used for Do an 
empirical correlation proposed by Fuller et al. [54, 55], 

lO-7T"75[(M, + M2)/M, M2] ,/2 
D o -  P [ ( ~  ~)co, + ()-'. - . I /3 . ~1/3 "l "~ (93) 

_ U I C 2 H ( , J  
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where T is in K, P in atm, and Do in m 2 �9 s-~. To determine Z v the values 
of the atomic diffusion volumes 

( ~  V)co = 26.9, ( ~  V)c,n = 37.7 (94) 

were used. The coefficients c~. can be found from fitting the crossover equa- 
tion (42) together with Eqs. (60) and (89) to the experimental binary diffu- 
sion coeff• far away from the critical point. Unfortunately, we do not 
have these data for carbon dioxide and ethane mixtures. Therefore we 
generated them with the empirical correlation proposed by Leffler and 
Gullinan for binary fluid mixtures [56]. 

Dr/= (D~2r/'2') '2 (DOt r/' ")"~ (95) 

where x~ and x2 are the molar fractions of the components, and the dilute- 
solution binary diffusion coefficients DO, and D~ were calculated with an 
empirical modification of the Stokes-Einstein equation for the diffusion 
coefficient proposed by Lusis and Ratcliff [57], 

8.52.10-'2r[ (vj?J' 1 
D ~ = n6~-~7./i 1.40 + (96) 

, / \V,} J 

Here T is in K, r/ in cP, and D~ ] in m 2.s-I, If/, and V; (in cm 3.moI-I) 
are the molar volumes of components at their normal boiling temperatures. 
In practice, we used 

V c o  2 = 55.024, Vc,H~ = 37.321 (97) 

where for CO, the value of the molar volume of liquid carbon dioxide at 
the triple point was taken. The values found for the coefficients ~k we then 
used to determine the coefficients flk- The coefficients/~k in Eq. (90) were 
found from fitting Eqs. (43) and (63) to the experimental thermal-diffusion 
ratio data obtained by Walther [58]. The thermodynamic properties for 
carbon dioxide and ethane mixtures were calculated from the crossover 
equation of state obtained above. The correlation length ~ is given by 
Eq. (45), where for the bare correlation length ~0, the cutoff parameter qD,  

and lo, we used simple linear approximations, 

~o = ~{}l }( 1 - x )  +go-  ~{2}..~, ( 9 8 )  

1 ( l - x )  1 q~t = qld, + q~---i x (99) 

lo = l~o~( 1 - x )  + lto2~X (100) 
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Fig. 6. The thermal diffusion ralio of the carbon dioxide and ethane mixture 
at temperature T =  305.15 K and concentration x =0.4 tool flaction of ethane. 
The symbols indicate experimentt,I data obtained by Walther [58] and Ihe 
curve represents values calcuhited with the crossover model. 

The parameter I. can be assumed to be the average distance between par- 
ticles and, in principle, can be considered as an additional adjustable 
parameter of our model. In the present work, in calculating lo, lbr sim- 
plicity we set 

/~, '' = [q~li~ ']  ' - -  .,.,,~'" ( 1 0 l )  

where for the system-dependent parameters -~i~ q,  , we adopt the values for 
pure carbon dioxide ( i=  1) and ethane ( i = 2 )  obtained by Olchowy and 
Sengers [ 13 ], 

~oI ~ = 0 . 1 5  n m  do  = 0 . 1 9  n m  {102) 

Table IV. Background Thermal ConductMty Coefficients 
Ibr the Pure Components (,;.k in W . m  ~.K-~)  

Carbon dioxide Ethane 

~:.~=2.329x 10 2 
,;.?~ = 2.643 x 10 a 
,%"~=4.952x 10 7 

2~12~=2.298 x 10  2 
,;.',2'=9.897 x 10 -a 

z,," '-" = 3.503 x l0 -a 
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The coefficients e~. and flk found in this way are reproduced in Table IV. 
The values of the coefficients ~k and flk depend strongly on the equation of 
state used for the calculation of the thermodynamic derivatives lLr and/~,. 
in Eqs. (60) and (63); therefore, they differ from the corresponding values 
obtained earlier by Kiselev and Povodyrev [16, 17] with the crossover 
equation of state of Jin et al. [22, 23]. 

The results of comparison with thermal-diffusion ratio data for the 
carbon dioxide and ethane mixture is shown in Fig. 6. Good agreement 
between calculated values and experimental data of Walther [58] for the 
thermal diffusion ratio is observed. As one can see from Fig. 6, the thermal- 
diffusion ratio increases in the critical region and reaches the maxima at the 
density p = 8.32 mol.  L ~, which is close to the critical density at this 
composition. 

6. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  

THERMAL-CONDUCTIVITY DATA 

In order to compare the crossover model with experimental thermal- 
conductivity data, in addition to the equation of state and expressions for 
the background transport coefficients ~b, fib, and qb, one needs the back- 
ground part Yb of the kinetic coefficient ~. This quantity can be written in 
the form [ 16, 17] 

)'b----~o(T,x)+A2~bl~(1 - - - \ ' ) + Z / ' ~ , 2 ) X - ] - - \ ' (  1 - - - u  ()'2/," I "k-Y2/, -X) 
/ ,=1 

(103) 

where ~o determines the ideal-gas limit of Ph, A2~, ~ and A2~, -'~ define the 
nonideal parts of the thermal conductivity 2b in the limits of the pure 
components, and the third part determines the nonideal part of the kinetic 
coefficient ~b in binary mixtures. An expression for ~, in accordance with 
Eq. (52) reads 

B ~~ T 
f0(T, x)=20(T,  x ) +  T '-~ ' x) (104) 

c~,,( T, x) 

where for 2~,(T, x) we use a simple expression proposed by Wassilijeva 
[59], 

2,,(T,x) (1 -x)211 ' (T)  x2{~'(T) _ o + ( 105  ) 
(1 --x)+xAi2 x + ( 1  --x)A21 
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Table V. 

Kiselev and Kulikov 

The Background Kinetic Coefficients (c% in k g . s . m  -~, [31 Dimensionless, [~, in 
k g - m - l . s  ~.K 1 ,  y, in W . m - ~ . K  -~) 

Coefficient for 8 b Coefficient for fib Coefficient for 7h 

% 4-6125 x 10-it  fll 3.4721 ),~ -3.7435 x 10 I 
ct 7 6.6796x10 II [~ - 1 . 0 4 5 0 x 1 0  6 ),_~ 4 .6099xl0  I 
cq, -2.5779 x 10 -II fit, 9.1371 x 10 7 Y5 1.2749 x 10-t  
c t l 3  --2.7020 x 10-it  ill2 -1.7185 x l0 -7 ~',~ 1.3688 x 10-" 
~I~ 2.6450 x 10 -12 ills 1.4604 x 10 - s  )',~ --9.5232 x 10-" 
cq~ 2.5930 x 10 -I-" 

with the Lindsay and Bromley [60] modification for A~2 and A_,~" 

1 
AI2=~ 

1 
A2~ =7~ 

{ 0, 
1+ r/~,l(--~,O),,M~/ T+S2J T+S, 

1 + ~ i ) ~ , O  ) T+S,J T+S2 

(106) 

Here ~"1=( i=1  2) is the thermal conductivity in the ideal-gas limit, 
St = 1.5r~>~,b, S,_ = 1.5T~ ~ and S~2 =,,/~tS,_ are Sutherlend constants, and 

TI]' 191.65K, TI2~=284.52K n b  ~ ~ n b  (107) 

are the normal boiling temperatures of the pure components. 4 In the limits 
of the pure components ~b ~--- f ib  ~ 0 [ see Eqs. (89)-(92) ], and Eq. (48) for 
the thermal conductivity in binary mixtures with account of Eq. (103) is 
transformed into the crossover equation for the thermal conductivity of 
one-component fluids: 

2 kBTpCps (108) 

where 2r T, p) is the background part of the thermal conductivity of pure 
components. As noted earlier by Sengers and co-workers [ 12, 13, 62], the 
excess functions Zl2Cb i~ ~ ~li> ----"b --'~0 can be treated as functions of the density 
only, so that 

2~I(T, p) 'i1=20 ( T ) +  k~ ,~_~) ( P ) * .  /Jr 

4 For pure C02 the value of the triple-point temperature was used. 

(109) 
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with 

2~c[~( T)= v/'T/~ 2'i~T- (110) 

For the coefficients 2 ~i~ 0i we adopt the same values as used by Olchowy and 
Sengers [ 13] for pure carbon dioxide and ethane, but the coefficients ]l iJ ~ k  

have been determined from a fit of the crossover equation (108) to the 
experimental data for the thermal conductivity of carbon dioxide obtained 
by Michels et al. [61 ] and the thermal conductivity of ethane obtained by 
Mostert et al. [62]. The coefficients 2~j I for carbon dioxide and ethane are 
presented in Table IV. The results of fitting the crossover equation (108) to 
the experimental thermal conductivity data for CO2 and C 2 H  6 are  shown 
in Figs. 7 and 8. Good agreement between the calculated values of the 
thermal conductivity and the experimental data is observed. 

In order to reproduce a global thermal-conductivity surface for the 
mixtures of carbon dioxide and ethane over the entire range of concentra- 
tions we need to know the coefficients ~'k. Since these coefficients determine 
the concentration and density dependence of the regular part of the 
thermal conductivity [see Eqs. (52) and (103)], we could in principle find 
them from fitting the crossover equation to the experimental thermal- 
conductivity data far away from the critical point. Since we do not have 
such data for carbon dioxide and ethane mixtures, in the present work the 
coefficients Xk in Eq. (103) have been found from a fit of the crossover 
equation (48) to the experimental thermal-conductivity data for carbon 
dioxide and ethane mixtures in the critical region obtained by Mostert 
[63]. The coefficients Yk are presented in Table IV. We found that the 
values of the critical densities and temperatures for the carbon dioxide and 
ethane mixtures obtained from this equation are essentially different from 
the values reported by Mostert [63]. Therefore we shifted the temperatures 
associated with the thermal conductivity data of Mostert [63] by AT= 
+0.260 K at x=0.26, AT=-0 .478  K at x=0.50, LJT=--0.445 K at 
x = 0.74, and AT= -0.463 K at x =0.75. At the near-critical isochores for 
the concentrations x=0.74 and x=0.75 mol fraction of ethane, sharp 
maxima of the experimental thermal-conductivity data of Mostert and 
Sengers [63, 64] are observed. These maxima of the thermal conductivity 
are extremely narrow and sharp even in the logarithmic temperature scale, 
and they are observed in the one-phase region at temperatures r ~-10 -3, 
where all crossover functions are equal to unity. Such sharp peaks of the 
thermal conductivity in the one-phase region near the plait points of binary 
mixtures cannot be explained by the renormalization of the thermal conduc- 
tivity of a binary mixture near the critical point. At these concentrations 
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Fig. 7. The thermal conductivity of carbon dioxide as a limction of d~e 
density along isothcnl~s, The symbols indicate experimental data obtained 
by Michels e! al. [61 ], and the curves represent values calculated with ttlc 
crossover model, 
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the temperature shift arrives the value zlT_~ 0.4 K, which corresponds to 
the dimensionless temperature A r _  10 -3. Thus, a reasonable explanation 
of the experimentally observed peaks of the thermal conductivity at 
concentrations x =0.74 and x = 0.75 mol fraction of ethane is that they 
correspond to the thermal conductivity jump in the liquid-vapor phase 
transition at the near-critical isochores as discussed by Luettmer- 
Strathmann and Sengers [21].  Therefore, we excluded from the calcula- 
tions thermal-conductivity data apparently corresponding to the two-phase 
region. The actual thermal-conductivity values for carbon dioxide and 
ethane mixtures at various concentrations and densities are plotted as a 
function of temperature in Figs. 9 and 10. Without the two-phase region 
data the crossover model gives a satisfactory representation of the 
experimental thermal conductivity of carbon dioxide and ethane mixtures 
over a wide range of temperatures and densities around the critical locus. 
The crossover model reproduces the experimental thermal conductivity 
data for carbon dioxide and ethane mixtures with an accuracy comparable 
with the accuracy achieved for pure ethane. We have to note that our 
crossover model, except the coefficients )'k, which determine the regular 
part of the thermal conductivity far away from the critical point, does not 
contain any adjustable parameters. The coefficients ~k and flk have been 
found from a fit of our crossover model to the thermal-diffusion ratio data 
and these values have been used in further calculations; therefore, in Figs. 9 
and 10 a comparison between the predictions by the crossover model values 
of the thermal conductivity in the critical region and the experi mental data 
are presented. The values of the pressure P, of the specific heat Cp., and 
of the thermal conductivity 2, calculated at some selected concentrations, 

Table VI. Table for Computer Verification 

Mole fraction Temperature Density Pressure Ce., 2 
ofC2H 6 (K) (moI.L -'~) (MPa) (J .g- I .K-I )  (mW-m-I.K -I) 

0.260 293.00 9.318 6.3074 1.9275 • 105 499.5867 
0.260 295.00 9.318 6.6032 3.1510 • 10  3 86.4668 
0.260 297.00 9.318 6.9010 1.4149 • 103 67.1967 
0.500 292.00 8.381 5.8098 3.4070 • 103 104.9525 
0.500 295.00 8.381 6.2007 1.1509 • 103 70.3846 
0.500 298.00 8.381 6.5940 6.6385 • 102 62.6211 
0.740 296.00 7.600 5.3379 2.2159 • 103 416.5296 
0.740 299.00 7.600 5.6818 1.0556 • 103 78.8371 
0.740 302.00 7.600 6.0293 6.3908 • 102 70.0329 
0.750 298.00 7.570 5.5170 1.4155 • 103 89.3309 
0.750 308.00 7.570 6.6730 3.6388 x 102 64.4508 
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temperatures, and densities, are presented in Table VI as an aid for com- 
puter-program verification. 

7. DISCUSSION 

The thermodynamic and transport properties of fluids and fluid 
mixtures exhibit singular behavior near the critical point that cannot be 
described by regular equations. The asymptotic equations for the transport 
coefficients in binary mixtures are valid only in the near-vicinity of the criti- 
cal point. In order to describe the nonasymptotic behavior of the transport 
properties in binary mixtures, the crossover to the regular classical 
behavior of the kinetic coefficients has to be considered. Simple crossover 
equations for these coefficients have been obtained earlier by Kiselev and 
Kulikov [15]. In the present paper we develop, on the basis of the 
decoupled-mode theory, an extended crossover model for the transport 
coefficients occurring in diffusion, heat conduction, and their cross- 
processes in fluid binary mixtures near the plait points. The crossover func- 
tions for the kinetic coefficients in a binary mixture have a simple form and 
coincide with the crossover function for the thermal conductivity in the 
one-component limit. 

The crossover equations for the thermal-conductivity and the thermal 
diffusion ratio in binary mixtures near the vapor-liquid critical line have 
been considered. The crossover behavior of the transport coefficients of a 
binary mixture along the critical isochore is determined by the charac- 
teristic temperature rD. In the temperature range rD 4 r ~  1 the thermal 
conductivity of a binary mixture behaves as the thermal conductivity of a 
pure fluid. Asymptotically close to the critical point at r ~ rD the thermal 
conductivity of a binary mixture is renormalized and, unlike the thermal 
conductivity of a pure fluid, does not diverge and tends to its critical back- 
ground value in the critical point. At temperatures r = rD the thermal con- 
ductivity of binary mixtures is a monotonic function of the temperature 
and exhibits a crossover from one-component-like behavior to the critical 
background. These predictions for the thermal conductivity are consistent 
with the results of a theoretical analysis performed earlier by Onuki [6]. 
Our estimates of the value of the characteristic temperature ro with 
Eq. (56) give that, for carbon dioxide and ethane mixtures, r D = 8.2 x 10-9 
at x=0.26 (azeotropic mixture), z o = l , 7 x l 0  -6 at x=0.40, t o =  
1.2x 10 -5 at x=0.50, and r0=6.3 x 10 -5 at x=0.75. This means that in 
the critical region at temperatures 10-6 -10-5<z~  1 the thermal con- 
ductivity of carbon dioxide and ethane mixtures exhibits a one-component- 
like behavior (57). The renormalization of the thermal conductivity 
described by Eq. (58) and the renormalization of the thermal-diffusion 
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ratio as given by Eq. (65) in these mixtures can be observed only at tem- 
peratures T< 10 -~', which makes it very complicated for experimental 
observation. We applied our crossover model to a description of the 
experimental thermal-diffusion ratio data of Walther [58] for the carbon 
dioxide and ethane mixture and the experimental thermal-conductivity 
data obtained by Mostert [63]. The results of our calculations for the 
thermal conductivity (see Figs. 9 and 10) confirm this theoretical conclu- 
sion. An asymptotic temperature behavior of the thermal-diffusion ratio 
calculated with the crossover equation, Eq. (63), along the critical 
isochores at composition x = 0,4 mol fraction of ethane mixtures is shown 
in Fig. 11. The renormalization of Eq. (58) for the thermal-difl'usion ratio 
is really observed at temperatures r ~ lO-e 

It is also interesting to compare the result of our calculations tbr 
carbon dioxide and ethane mixtures with the results obtained by Luettmer- 
Strathmann and Sengers [21]. In our approach the crossover function 
~ , , s - 0 ,  which corresponds to the direct calculations of Luettmer- 
Strathmann and Sengers [21]. A comparison between our crossover func- 
tions ~= and g'2 and the corresponding crossover functions g2~ and ~ss 
introduced by Luettmer-Strathmann and Sengers [21] is shown in Fig. 12. 

60%C02+40%C2H6 

6 ........................ ~;:.: 
5 

l " -  

v, 4 
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1 

' I I r I I r I I 

0-9 -8 -7 -6 -5 -4 -3 -2 

log z(x) 

Fig. 11. The thermal-diffusion ratio of the carbon dioxide and ethane 

mixture as a function of temperature along the critical isochore at the 

concentration x = 0.4 mol fraction of ethane. The solid curve represents 
the values calculated with the crossover model, the dashed curve 

corresponds to the asymptotic behavior at T < rl~, and the dolled dashed 

curve corresponds to the asymptotic behavior at rD < r ~ 1. 
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Fig. 12. Tile crossover functions Ibr the transport Coefficients of the 

carbon dioxide and ethane mixture at concentration x = 0.75 mol frac- 

tion of mhane as a ftlnction of the dimensionless correlation length along 

the critical isochore. 

The functions s and s exhibit qualitatively the same behavior: however, 
the crossover function (2ss, unlike our crossover function s does not tend 
to unity in the asymptotic critical region, but s --* 0.25 at ~. ~ ~ (r---, 0). 

Quantitatively the calculations of Luettmer-Strathmann and Sengers 
[21]  for carbon dioxide and ethane mixtures give a slightly better 
representation of the thermal conductivity at separate isochores thr away 
from the critical point. In order to describe the thermal-conductivity sur- 
lace of binary mixtures in a wide region around the critical locus better, we 
have to use more coefficients in Eqs. (89), (90), and (103) than we used in 
the present paper. However, for that purpose we need more detailed 
experimental data for the thermal conductivity and diffusion coefficients of 
carbon dioxide and ethane mixtures. 

A P P E N D I X  

Our aim is to obtain a crossover expression for the kinetic coefficient 
with account of the next term ~ k 4 in the effective Hamiltonian of the 

system. With this in mind, we consider the Hamiltonian in the form 

- f ' + c~k ~) ) H =  ~ (arrp 2 + c(Vgo) 2 + c~(AcP) 2) dF= ~ ~ (a t  + ck: [~ok-I 2 (A.1 
E 
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The static correlation function in this case reads 

k , T  kBT(Ox/Op)e, r (A.2) 
G(/~) = (]q~a:] 2) _ ar + ck 2 + c{k 4 - p[ 1 + (k~)2] [ 1 + (kl) 2 ] 

where the correlation length in this approximation is given by 

C_ r = ~ - ( 1  + ~/1 - 4(10/r 2) (A.3) 

and 

l 2 = 1 - -  1 - -  4 ( 1 0 / { o z )  2) (A.4) 

is a new noncritical size which remains finite at the critical point (l ~ 10 at 
~oz ~ or). Here lo=c~/c o, and ~oz=x/cp-'(Ox/Op)e.r is the Ornstein- 
Zernike correlation length. Substitution of Eq. (A.2) into Eq. (19) and 
integration over all k up to the cutoff wave number qo yield 

kBTp (Ox/Op)e,r o(t)t- 
d~ = 67~q ~ ( / - - - ~ ) 7 )  ~~ ,up,  {, l) (A.5) 

where the new crossover function 

O~, ) (qo , { , l  ) = _2 {arc tan(qo~)_ ( l / { )a rc tan(qDl )+~ .  ~o, 2 ,t., , u p ,  G / ) }  (A .6 )  
7[ 

with 

o,2)t,, ~, l) v/~ 1 1 1 arctan x/~ qD~l 
~,~ ,,lr), =---if-- x/~2+12+(~2 12) F ~/~2+12+(~2_12)F 

1 x//-2qr)~l ] 
arctan - - - - -  4~2-{-12--(~2--12) F 4~2-FI2--(~2--12)F 

(A.7) 

and 

4yDq~)12{2( l + { ) 
F =  1 - -  ( ~ 2  12)2  (A.8) 
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The validity of these expressions is restricted by the obvious condition 
F 2/> 0 or, equivalently, 

(C2 __ 12)2__ 4y DqDl2~2( l q_ C) >/0 (A.9) 

A solution of this inequality with the reasonable estimates YD -- 1, l-- lo, 
and qDlo -- I gives (l/C)~ 0.2. In this region we can replace the function F 
on its expansion in powers of the small parameter (l/C): 

F_~ 1 - 2yDqDl( l/C ) + (9(/2/~ 2) (A.10) 

and consider the correlation length ~ and the noncritical size l in the 
critical limit only (C = Coz, l =  10). Then Eq. (A.7) for the crossover func- 
tion f2 ~ reduces to 

~,-2 (2)~ ( / /~oz)  (qD, ~, l) = 
~/1 - YoqD4(l/r 

arctan 
qDl 

~1 - yt)qD4(l/~oz) 2 

1 qo~ 
arctan 

x/l + yoqD4 "Jl + yDqo4 

l 1 
arctan(qDl) - arctan 

-~o~ ~/1 + yoqo4 
+ (9(/3/~ 3) 

qD~oz 

~1 + YDq04 
(A.l l)  

with renormalized correlation length, 

t~ ?) 
\~oz/ /  

(A.12) 

Substituting Eq. (A.I 1) into Eq. (A.6) gives 

, ^ 2 farctan(qD~oz) 
x / l +  YDqD4 

arctan qo~oz 

(AA3) 

Equation (A.13) was obtained under the condition (l/4)~ 1; however, 
unlike Eqs. (A.6)-(A.8), it can be extrapolated also in the region where 
(l/4) >> 1. As one can see from Eq. (A.13), far away from the critical point 
~oz---10, 4---,0, and the crossover function f2~ ~) ~ 0 .  If we demand that 
not only the crossover function t2~ ~ but also its first derivative tends to 
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zero in this region, we can replace ~oz in Eq. (A.13) by the renormalized 
correlation length ~. This replacement does not change the crossover func- 
tion in the critical region where d.o• ~-~ and provides the correct 
asymptotic of this function in the case ~o• ~-/o. Finally, Eqs. (A.5) and 
(A.6) can be written in the form 

A~,_kl~TP(C~x/c?P)1",r il~ e 
f 2  (qDq) (A.14) 

67rq~ 

with 

- arctan (qD~.)=~ arctan(q,)~) x / l + y D q , , ~  q,,4 t 
x/1 + )'DqD~. j 

(A.15) 

One can see that Eqs. (A.14) and (A.15) coincide with Eqs. (23) and (27), 
respectively, with account of the replacement d. by the renormalized 
correlation length ~. 
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