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Thermodynamic and Transport Properties of Fluids
and Fluid Mixtures in the Extended Critical Region
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A practical representation of the thermodynamic properties and the transport
coefficients related to diffusion, heat conduction, and their cross-processes in
pure fluids and binary mixtures near the liquid-vapor critical line is developed.
Crossover equations for the critical enhancement of those coeflicients incor-
porate the scaling laws near the critical point and are transformed to the regular
background far away from the critical point. The crossover behavior of the
thermal conductivity and the thermal diffusion ratio in binary mixtures is also
discussed. A comparison is made with thermal-conductivity data for pure
carbon dioxide, pure ethane, and carbon dioxide add ethane mixtures.
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1. INTRODUCTION

It is well known that the state of a fluid near the critical point is charac-
terized by anomalous large fluctuations of the order parameter [ 1, 2]. The
intensity of these fluctuations diverges at the critical point. As a conse-
quence, both the thermodynamic surface and the transport properties of
fluids exhibit the singularities at the critical point. The asymptotic singular
behavior of the thermodynamic properties and of the kinetic coefficients
related to diffusion, heat conduction, and their cross-processes in binary
mixtures can be described in terms of scaling laws with universal exponents
and universal scaling functions [3-7]. However, the validity of these laws
is restricted to, the near-vicinity around the critical point. On the other
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hand, it has become evident that critical fluctuations are actually present in
fluids over a very large range of temperatures and densities [ 8, 9]. In order
to account for effects of these fluctuations on the equation of state and on
the kinetic coefficients of fluids, it is necessary to consider the non-
asymptotic critical behavior of the thermodynamic and transport proper-
ties including the crossover to regular classical behavior far away from the
critical point. For one-component fluids this task is practically solved
[8-14]. For binary mixtures the decoupled-mode calculations by Kiselev
and co-workers [ 15-17], the recent renormalization-group calculations by
Folk and Moser [18-20]. and the mode-coupling results obtained by
Luettmer-Strathmann and Sengers [21] not only confirm earlier
asymptotic predictions, but also extend the description of the transport
properties of binary mixtures into the crossover region. However, in Refs.
15-17 and 21 the thermodynamic properties for carbon dioxide and ethane
mixtures were calculated from the crossover equation of state of Jin et al.
[22, 23], which has been obtained without account of the new C, | data
obtained by Magee [24] and P, p, T, x data obtained by Lau [25] over
a wide range of the temperatures and densities. Moreover, the crossover
model proposed by Luettmer-Strathmann and Sengers [ 21 ] represents a fit
of their crossover equations to experimental thermal-conductivity data at
separate compositions and isochores only and cannot be used for the
calculation of the transport properties of carbon dioxide and ethane
mixtures on the entire thermodynamic surface.

It is the purpose of the present paper to describe the thermodynamic
and transport properties of binary mixtures in a wide region around the
critical point on the basis of the modern theory of critical phenomena. In
calculating the thermodynamic properties for pure fluids and binary
mixtures a new parametric crossover equation of state which incorporates
the scaling laws asymptotically close to the critical point and transforms
into the regular classical expansion far away from the critical point has
been used [26]. In evaluating the crossover expressions for the kinetic coef-
ficients in binary mixtures we use the decoupled-mode theory method
originally introduced by Ferrell [27]. The crossover equations for the
critical enhancements of the transport coefficients is developed by incor-
porating a finite cutoff wave number and time-dependent correlation func-
tions of the order parameter and the entropy into the decoupled-mode
theory integrals. This study has led us to introduce some modifications in
the simple crossover model obtained earlier by Kiselev and Kulikov [15].
It is shown that the correct regular behavior of the transport coefficients is
provided by the redefinition of the correlation length of the order-
parameter fluctuations. In the vicinity of the critical point the crossover
expressions for the critical enhancements of the transport coefficients in a
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binary mixture incorporate the scaling laws and reproduce the asymptotic
expressions obtained earlier by Mistura [4, 5]. Far away from the critical
point the crossover expressions transform into their regular background
parts. The crossover expressions for the thermal conductivity and the
thermal-diffusion ratio in binary mixtures are also considered.

We proceed as follows. In Section 2, we formulate the crossover equa-
tions for the Onsager kinetic coefficients. In Section 3, we analyze on this
basis the crossover behavior of the thermal conductivity and the thermal-
diffusion ratio near the liquid-vapor critical point of binary mixtures.
A new parametric crossover equation of state for mixtures of carbon
dioxide and ethane and a comparison with experimental data in the one-
and two-phase regions are discussed in Section 4. In Section 5, we discuss
the role of the regular (background) parts of the kinetic coefficients in the
crossover behavior of the thermal conductivity of mixtures and propose
simple expressions for calculating these coefficients in mixtures of carbon
dioxide and ethane. A comparison with experimental thermal-conductivity
data for pure carbon dioxide, pure ethane, and carbon dioxide and ethane
mixtures in the critical region is given in Section 6. In Section 7, we discuss
our results.

2. CROSSOVER EQUATIONS FOR THE KINETIC COEFFICIENTS

The Onsager expressions for the diffusion current J, and heat current
J,, in binary mixtures read [28]

J,=—aVu—fgvT (1)
J, = —BTVu—5VT+uJ, (2)

where T is the temperature, g =u,—g, is the chemical potential of the
mixture, and & f, and 7 are Onsager kinetic coefficients. Mode-coupling
calculations performed by Gorodetskii and Giterman [3] and Mistura
[4, 5] show that, asymptotically close to the critical point, the Onsager
kinetic coefficients diverge as the thermal conductivity of a one-component

fluid,
#-1-Rg i),
=710t ar),,



1146 Kisclev and Kulikov

where # is the shear viscosity, p the density, x=N,/(N, + N,) the mole
fraction of the second component, S the molar entropy of the mixture, &
the equilibrium correlation length, k; Boltzmann’s constant, and the sub-
script “b” denotes the background part of the kinetic coefficients, which is
an analytic function of the concentration, temperature, and density. The
asymptotic equations, Eqgs. (3)—(5), are valid only over an extremely small
range of temperatures and densities around the critical point. In order to
consider the crossover behavior of the transport coefficient in binary
mixtures, it is convenient to start from the correlation-function expressions
also known as “Kubo formulas,”

. 1 ; B o
a=6kBT '[d; fdt<],/(0, 0) (7, 1) (6)
- 1 ~ _ o
ﬁ=6kBT2 Idl de<]zl(0, 0) ].’)‘(” f)> (7)
- 1 ; B -
}’=6kBT2 Ja’l Jdt<f.5'(0’ 0) J (7 1)> (8)

where j, and j; are the microscopic diffusion and heat currents. Since the
concentration and entropy density are slow variables near a critical point,
they may treated as independent from the velocity fluctuations in the
current—current correlation functions. If j,=p dx7 and js= Tp dSU (where
ox and 4S5 denote the deviations of concentration and local entropy from
the equilibrium values, and 7 is a velocity), Eqgs. (6)—(8) transform to

2

Ad=6:BT fdfjdz@x(o,omx(f, 0S¢0, 0) &(F, 1)) (9)

AB’=6:[;T jdff d1{5x(0, 0) S(F, 1)>{H0, 0) #(F, 1) (10)

Af.=6”_' [ ar [ ar<os10,0) 85(7, 1> <510, 0) 517, 1) (11
B

Thus the correlation functions for the fluctuating currents have been fac-
torized, which is referred to as the “decoupled-mode” approximation [27],
by means of which the correlation functions become simply the products of
the correlation functions of the individual fluctuating variables. In order to
establish the behavior of the velocity correlations we may restrict ourselves
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to linearized hydrodynamics equation. In this case we have, for the
velocity—velocity correlation function [ 1, 28],

<o(0, 0) (7, 1)y = (12)

1 r?
4/7 «/(nvt)3 <_4_W>

with v=g#/p, and where # is a high-frequency shear viscosity which is finite
at the critical point [27]. Very close to the critical point the relaxation
time of the fluctuations is extremely large, and in a zero-order approxima-
tion we may ignore the time dependence of the correlations of the concen-
tration and entropy on the right-hand side of Egs. (9)-(11) and replace
them with the corresponding static correlation functions. With the
Ornstein—Zernike approximation for the static correlation function of the
order parameter

e N kT [Ox
Glk) = <loel >—[1+(ké)2]p<5ﬂ>p.r (13)

(where ¢ is a Fourier component of the order parameter at wave vector k),
Egs. (9)—(11) with account of Eq. (12) are simply transformed into the
asymptotic expressions for the kinetic coefficients in the form of
Eqgs. (3)-(5). In order to obtain the crossover expressions for the kinetic
coefficients, the time-dependent correlation functions for the concentration
and entropy in Egs. (9)—(11) should be considered. Since at the critical
point the most slowly relaxing variable is the order parameter, first we con-
sider the time dependence of the order parameter. For the conserved order
parameter the equation of motion has the form of a linear Langevin
equation [2],

do(F,t) & _, <5H>
== V- 14
a1 pe 30 +{(F, 1) (14)
where ((F, t) is a Gaussian noise source, and the effective Hamiltonian of
the system near the critical point can be written in the Landau-Ginzburg
form [1],

. e ¢ , U,
— ——— — - _— 15
—’fdr[ar +2(V(P) +1¢] (15)

where 1= T/T, —1 is the dimensionless deviation of the temperature from
the critical temperature T, and g, ¢, and u are positive constants. The term
~ ¢* in Eq. (15) takes into account an interaction between fluctuations of
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the order parameter. This term plays an essential role in the calculation of
the critical exponents which determine the asymptotic scaling behavior of
the thermodynamic properties of the system near the second-order phase
transition. For this purpose it is necessary to apply the renormalization-
group method [2], which makes Eq. (14) too complicated for the further
analysis. As long as we are interested in simple crossover expressions con-
necting the thermodynamic and transport properties of binary mixtures, we
consider the solution of Eq. {14) in the Gaussian approximation (u=0).
However, in the final expressions we use for all thermodynamic quantities
the scaled equations with the theoretical values of the critical exponents.
In terms of Fourier components, the solution of Eq. (14) reads

5¢A__=J. eAi(-/:*fklmr+uk3)u—— I"CIF(") dr' (16)

which, together with the normalization
LAY Loty =2k g Ta kS o1 —1') (17)

yields
- . ko Ta -kt
<0</7Aw(0)()gok-(1)>=G(k)exp<—%(‘k—)> . (18)

where G(k) 1s the Ornstein—Zernike correlation function as given by
Eq. (13) with ¢ =./c¢p ~'(0x/du), 1 the correlation length in this approxi-
mation. Substitution of Eqs. (18) and (12) into Eq. (9) and integration over
the variables 7 and 1 yield

d4d =

AN o (19)
0

12n* K [v+kyTa-p G '(k)]

The integral is to be evaluated over all k¥ up to the maximum cutoff
wave number ¢, =|§;,| first introduced by Pert and Ferrell [29]. The
k-dependent transport coeflicient &, similar to the transport coefficient &,
can be represented in the form

dp=dalk)+d,(k)=dalk)+ &,(0) (20)

where we ignore the k dependence of the background part &,(k) and
consider it in the hydrodynamic limit &,(k)=&,(0)=4&,. The transport
coefficient

Ada(k) = 4D(k) px(k) (21)
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where we have introduced the notation y(k)=(dx/du)p /(1 +k?E*). The
k-dependent diffusion coefficient AD(k), similar to the thermal diffusivity
4D (k) of the one-component fluids, in the asymptotic critical region in
the limit ¢, — o satisfies an equation of the form

kT

AD(k) o

Qy(kS) (22)

where Qu(z) = (3z)[1 +z* + (= —z ")arctan(z)] is the so-called
Kawasaki function [30, 31]. Then Eq. (19), with account of Egs. (13) and
(22), reads

. ks Tp <a.\-

6rne 'aﬁ>,{7_91((11)c.) (23)

where

2 rans dz
2.(q081== | (24)

i {(1+:3)<1+&<a—",> [1+yoa(:>](1+:2)ﬂ
n\Ox/p r

with the dynamical scaling function

o(z) =2 (2)/(1 + %) (25)
and
Yo= kBT{) <a—\> (26)
6rncd, \Op/ p. r

Because of the nontrivial dependence of the dynamical scaling function o(z)
on k, the integral in Eq. (24) can be evaluated rigorously only numerically.
However, as shown by Kiselev and Kulikov [ 15], a reasonable approximation
for this integral can be obtained even if we ignore the k dependence of the
dynamical function o(z) in Eq. (24) and consider it only at the constant
value of the wave number k =k, =0.1q,. Integration of Eq. (24) in this
case yields

arctan I¢ ] (27)

) 1
Qi(ql){)zg[arctan(q:)f)—m ST+ yoané
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with

_ 6nn’
kg Tpgp(ao+ v, ')

Yo (28)

where g, =0(kp¢) with k5=0.1g,.

In order to obtain the crossover equations for the kinetic coefficients
AB and 47 similar to the kinetic coefficient 4&, we need to know the time-
dependent correlation functions {(dx dS) and {JSdS>. In the Gaussian
approximation the local entropy can be represented in the form [1, 2]

S 1) =~ 9 1)+ (g—’}) K (29)
where the coefficient a, critical temperature T, and derivative (0u/0T) . .
are functions of P. This definition of the local entropy corresponds exactly
to the scalar extra field ¢{(7) introduced by Siggia et al. in their renormaliza-
tion-group treatment [33]. With account of Eq. (29), the corresponding
expressions for the correlation functions read

ou

(5x(0,0) 3S(F, 1) =<6T

> {06¢(0,0) do(F, 1)) (30)
P x

a 2
(3510,0) 65(7, 1y = (35 <39(0.0) b9(7. 1)
P, x

a

372 (070,00 89(7, 1)) (31)

+

Substitution of Eq. (30) into Eq. (10) yields

AB=kBTp <6x

6rné ﬁ>ﬂ# 'Q/i(qDé) (32)

where the crossover function 2, coincides with the crossover function
for 4&

-Q/;(‘]Dé)=-Qa(CID§) (33)

Equation (11) for 47, with account of Eq. (31), takes the form

__ksT?p <au>z (@x) ks TpCs .
- T B)p =it 34
A=z \oT p \Gi)p r (08 + = % Wan)  (34)
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where Q2,(g¢) ~ {dp d¢) and, as in the previous case, coincides with the
crossover function for 44,

2,(q9p¢) =2.qp¢) (35)

The crossover function 2,(gp&) ~ {Jp” d¢*> and a direct integration of
Eq. (11) yield a slight logarithmic divergence, £,, ~In(g,£). This non-
physical divergence is a consequence of the Gaussian approximation
adopted in this paper. The static correlation function {d¢? é¢>) is propor-
tional to the isobaric specific heat capacity

Cp..\~~f<5(/)2(0)5¢2(r‘)> dr (36)

which diverges weakly as t~* at a consolute critical point, whereas in the
Gaussian approximation the critical exponent a«=0. Thus within the
Gaussian approximation we cannot obtain the correct result for the cross-
over function Q,, from Egs. (11) and (31) directly. However, in the limit
x — @ the derivative (0x/0u)p + ~ x — 0, the specific heat capacity Cp , of
a binary mixture is transformed to the isobaric specific heat capacity Cp of
the pure components, and as one can see from Eq. (34), the kinetic coef-
ficient 7 tends to the thermal conductivity 1 of the one-component fluids
(= 1).* Thus in the limit of pure components the crossover function
Q,(gp¢) has to transform to the crossover function of one-component
fluids ©2(gp¢). It means that the actual form of the crossover function
Q,7(gp¢) can be derived from the mode-coupling equation for the thermal
diffusivity of one-component fluids. The mode-coupling theory of critical
dynamics yields the following integral for the singular contribution to the
thermal diffusivity D= A/pCp [30-32]:

4X(q)
4D =
" 5Cg)
faT [ g CATA) sin’0
= dk = — (37
2 o F| G | -k D 00—

where 44 = 14— 4, is the singular part of the thermal conductivity 4, A, the
regular or background part, and § the wave vector of the fluctuations,

¥The crossover of the thermal conductivity of a binary mixture in the limit of pure
components is discussed in more detail in Refs. 6, 7, and 15.
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while O is the polar angle of & with respect to . In the hydrodynamic limit
{¢ — 0) and under the following assumptions,

C,{0) .
C/-(k):]_#ké)—y (k) =n(0), D (k) =[4M0) alk,¢E)+ A,]/pCplk)
(38)
we obtain after integration
Q(ql)f)=9|;.(‘1|)f)
2 1 o
=—| arctan(g,¢{) — —===—==—=arctan L] (39)
T I+ vingné V1I+yingné
with
6ny?
Yip= ! (40)

kyTpgy(o,+ _V|_I)

where v, =k TpC, ,/67néf,, with C, ,=T(0S/0T), ,, and 6, =o(kE).
In the case y,,, =y, the crossover function 2(¢,¢) coincides again with
the crossover function Q {q,¢).

As one can see from Egs. (27) and (39) the crossover functions £, and
€ contain the correlation length as an argument. This means that the
crossover behavior of the transport coefficients of a binary mixture depends
strongly on the definition of the correlation length. Equations (27) and (39)
have been obtained in the Ornstein-Zernike approximation for the correla-
tion function. In this approximation we took into account only the first
term ock? in an expansion of the effective Hamiltonian of the system in
powers of the wave vector k. Near the critical point the main contribution
to the integral arises from components with small values of the wave
number; therefore, this approximation is substantiated. However, as we are
interested in the crossover behavior of the kinetic coefficients, the next
terms in the effective Hamiltonian have to be considered. In order to take
into account a difference of the static correlation function of the order
parameter in the crossover region from its Ornstein—-Zernike approximation,
let us consider the effective Hamiltonian in the form

H=1 j (at@® + (V) +ci(dep)?) dF =3 Z (at+ck>+cik*) log?  (41)
k

The details of the calculations of the crossover function in this case are
presented in the Appendix. The main result of these calculations is that we
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can simply replace the Ornstein~Zernike correlation length in Egs. (27)
and (39) by the renormalized correlation length.

Finally, the crossover expressions for the kinetic coefficients of a
binary mixture can be written in the form

- klg Tp <@\‘> 2 .
d=——l7"] L.gpl)+a 4
6nné \OU/ p. v To b (42)
~ kpyTp <5.\‘> . ~
= 2 Y 91(( é) + h 43
d 6nné \0T / p.,, 7o b (43)
~ kBsz <a\> <all >2 s kyTpC, .
= =\ 5 Py Qg+ ——=2Aq<) +7, 44
} 67[)]{ aﬂ PT oT Py o6 67[)76_ qpc) + 7 (44)

where the crossover functions 2.(g,,¢) and Q(¢g,,¢) are given by Eqs. (27)
and (39) but with the renormalized correlation length

- / 2
E=¢, 1—(%) } 45
()/_|: g()z ( )

corresponds to the Ornstein-Zernike approximation for the correlation
length, &, and I, are the amplitudes of the asymptotic power laws for the
correlation length and reduced isomorphic compressibility 7 = p(8p/0P) .,
P.p.°, respectively, and /, is a characteristic length, which is of the order
of an average distance between particles. Asymptotically close to the criti-
cal point gp&> 1, the singular parts of the kinetic coeflicients are much
larger than the regular (background) parts (y, > 1, v, > 1, yp = y)p = 1),
all crossover functions approach unity, and Eqs. (42)—(44) in the critical
limit reduce to the asymptotic solution given by Eqgs. (3)—(5). Far away
from the critical point, ie. ¢p¢ <1, the crossover functions tend to zero
(2, - 2—0), and all kinetic coefficients approach their regular parts.

Here

g

Caorv=

3. THERMAL CONDUCTIVITY AND THERMODIFFUSION RATIO

The thermal conductivity of the mixture A is defined by the equations
[28]

J,=0, J =—avT (47)
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which, according to Eqs. (42)-(44), lead to the following expression for
thermal conductivity of binary mixtures [15]:

()

B2 kyTpCp . A .
7B K TPCrs oo &)+ 2 TO() + 7 (48)

A=9—-T—
o 6nné

where the crossover function Q,(g,¢) appears only in the argument

e . kT
y= 488, = 12,908 =2 1 1 2,(g06) (49)
67”750%
of the new crossover function
(14 2y%) — (p*)?
o(y) =2 =0 (50)

1+y

Here we have introduced the notations u, =(01/0x)p 4, tt7=(01/0T)p .,
and y* = f§, /u&,. Thus the crossover behavior of the thermal conductivity
of a binary mixture in the critical region is determined by the function
Q(y). Far away from the critical point, where the singular part of the
kinetic coefficient A& is negligibly small compared with the regular part &,
ory<l (gpé<l, 2~Q, <1), the function Q(y)= — (p*)2+ (1 + y*)* y,
and the thermal conductivity reads

A

li2

koT, X
L Cru— .ﬁb Q+y ) um, }Q(qoé)Hh (51)
6m7£ XL

where Cp ,=Cp + Tuzu ', and the regular (background) part

B

b

/lb—Yb—“bTﬂr(,V ) =ph—T= (52)

Asymptotically close to the critical point, where the singular part A&
is much larger than the regular part &,, the parameter y>1 (gpé> 1,
Q=~Q =1), function Q(y)=1+2y*~—(1+ y*)*/y, and the thermal
conductivity tends to its critical background value as

T,
kTP o a1+ 2T T, (53)
6nné y

A

[
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At the critical point of binary mixtures the first two terms on the
right-hand side of Eq. (53) are equal to zero (C, ./&oc 1 %*"—0,

y~'oc u € oc 177" 0), and the thermal conductivity remains finite,
lim A=A, (54)
H{x)—0
where the critical background
Aep =4y + TuZau(1 + y*)? (55)

1s not equal to the regular part A,.

In order to analyze the temperature dependence of the thermal
conductivity of a binary mixture, let us consider the critical isochore. At
the critical isochore p = p(x) in the temperature region 7(x) < 1, where the
asymptotic power laws é~¢& v~ and kyTu_' =T 0T~ are valid, the
condition y =1 determines a characteristic temperature

chO;l ey
o (Lot 5
™ <6m750ab> (56)

The temperature 7, is equivalent to the characteristic temperature 7p
introduced by Onuki [6]. In the temperature range 7, <7 <1 the specific
heat capacity Cp , oc u;' oc t7%, the parameter y <1, and the thermal
conductivity of a binary mixture exhibits one-component-like behavior,

A—A, ~Constz™>*" (57)

At temperatures T <1, the parameter y» 1, and according to Egs. (53)
and (55), the singular part of the thermal conductivity of a binary mixture
tends to a finite value at the critical point,

A= Ay = Tuddy(1 + y*)? — Const 7/~ (58)

In order to calculate the thermo- and barodiffusivity it is useful to
represent the diffusion current in the following form [28]:

- pD pD
J(,=—pDVx—TTVT—TPVP (59)
where the binary diffusion coefficient

D=2u, (60)
p
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the thermal-diffusion coefficient

T ~
Drz;(‘iﬂ'r‘"/j) (61)
and barodiffusivity
&P (Cu
D,=—1\=

The thermodiffusion ratio with account of Egs. (42), (43), and (61)
can be represented in the form

D.
kep=T = Turu ' K(y) (63)
with
14 p*
K(v)= - 64
() 1+y (64)

In the critical region, where y > | (1 < 1y), it remains constant, and the
thermal-diffusion ratio at the critical isochore diverges as the correlation
length,

6nd,
ky=—
" kgp

pr(l+y*) é~t" (65)

1

and as 4, ' when y <1 (> 1),

kp=Tump, (1+p¥)~177 (66)

These predictions for the temperature dependencies of the thermal
conductivity and the thermal-diffusion ratio at the critical isochore of a
binary mixture are consistent with Onuki’s predictions [6] and are
restricted to the region 7(x) <1, where the asymptotic scaling laws for all
thermodynamic quantities are valid. For fluids and fluid mixtures this
region is restricted by the temperatures 7 < 10* [34, 35]; therefore, for
the numerical analysis of experimental data the crossover expressions,
Egs. (48) and (63), together with the crossover equation of state for binary
mixtures have to be used.
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4. CROSSOVER FREE ENERGY FOR CARBON DIOXIDE AND
ETHANE MIXTURES

In the present paper we used the crossover model for the isomorphic
free energy of binary mixtures recently obtained by Kiselev [26]. The
isomorphic free-energy density of a binary mixture is given by

pA(T, p, %)= pA(T, p, x) — pux(T, p, %) (67)

where pA(T, p, x) is the Helmholtz free-energy density of the mixture, and
the isomorphic variable % is related to the field variable £, first introduced
by Leung and Griffiths [36], by the relation

e;l/RT
\:1—C=]+e}l/RT (68)
The thermodynamic equation
04 1
x=—%1-X)|=— — 69
= \)<5f>r.,,RT ()

(where R is the universal gas constant) provides a relation between the
concentration x and the isomorphic variable X. At fixed X the isomorphic
free energy pA is the same function of v and p as the Helmholtz free-energy
density of a one-component fluid,

pA(T, p. %) +,_ [ < i ]
= =kr *R¥q) | a¥P,(0) + gr'"R~"(q) ¥.(0)
Rpy T (g o 1§l 1 (
4 ~
- P . Con PC(X)
+ Ai+—m; | T(X)—————
,~§| ( P > Rp <0 TcO
T
AL (1 = %) +1it,] (70)
Peod o
T— T(%) .
=—————-" = 1—1)‘9’ 71
T Tc(f) r{ ) (71)
Ap=£lf(’i)—=l?r”R""+“z(q)9+c~l|r (72)
PLX)

where o, f§, and 4, are universal critical exponents, and b? is the universal
linear-model parameter. The values of these universal constants are listed
in Table L. The universal scaled functions %;(6) and the crossover function

84018 3-6
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Table I.  Universal Constants in the Helmholtz Free-Energy Density

a=0.110
f=0325
y=2—-a—-28=124
b2=(y=2/)/y(1 =28)=1359
4,=4,=051
Ar=4,=24,=102
Ay=dy,=y+—1=0565
s=dy=4,—5=0065

R(q) are the same as those in the parametric crossover model employed
earlier by Kiselev [26],

v.(0)= Z a(,Hf (i=0,..,4) (73)
=0
where o, are universal constants, and

B qZ 2
R(q)—<1+1+q> (74)

where the variable g is related to the parametric variable r by
q=(rg)"? (75)

As demonstrated in a previous publication [9], the system-dependent
coefficient g is proportional to the inverse Ginzburg number Gi.

All system-dependent parameters in Eqs. (70)—(72) as well as the
critical parameters T (X), p(%), and P(X) are analytic functions of the
isomorphic variable X. For the critical parameters we use the same expres-
sions as in our previous papers [ 26, 37],

TA%) = Tool1 = %) + T F+3(1— %) 3 T,(1—25) (76)
i=0

Pl = peo1 =)+ p ¥+ H1—%) T p,(1-2%) (77)
i=0

PR) =Pl — %)+ P i+ 3(1—%) Y P,(1—2%) (78)

]
=)

where the subscripts 0 and 1 correspond to the first and second com-
ponents of the mixture, respectively.
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In addition to Egs. {76)—(78), we also adopted a so-ealled critical line
condition which implies that a zero level of the chemical potential of a
binary mixture can be chosen so that the isomorphic variable ¥ = x along
the whole critical line, including the one-component limits. For the ther-
modynamic potential as given by Egs. (70)-(72), the critical-line condition
can be written in the form

T, dT,

drity 1 dP, Pco 5 .
el L e 0 7 20
d%  Rp.T, d% +<pc '+m'> T2 d% (19)
In this case, along the whole critical line ¥ = x, and
T(X)=Tdx), pAX)=pdx), P(%)=P(x) (80)

To specify the crossover equation for A(T, p, %) of a binary mixture,
we also need the system-dependent parameters c?,(,i'), I—c'(f), ax), ¢(x),
&(X), m,(%), and A4,(%) as functions of the isomorphic variable %. To repre-
sent all these system-dependent parameters in Eqs. (70)—(72), designated
k,(%), as functions of ¥ we used an isomorphic generalization of the law of
corresponding states [26, 377, which, for k and d,, written in the form

k(R)=ko+(ky—ko) T+ AZ () (81)
and, for all others coefficients, reads

P(%)
Rpo T

ki(z)= Lkio+ (ky — ki) R+ Kk AZ(%)] (82)

In Eqs. (81) and (82) k!" are mixing coefficients, and
AZ(X)=Z (%)= Z;4(X) (83)

is a difference between the actual compressibility factor of a mixture Z (%) =
P(%)/Rp (%) T{X) and its ideal part Z (%) =Z (1 —%)+Z, X.

In the present work the coefficients T, p;, and P, in Eqs. (76)-(78)
and the mixing coefficients k!’ were determined from a fit of Eqs. (70)—(72)
to experimental thermodynamic-property data for carbon dioxide and
ethane mixtures in the one-phase region.

For pure ethane we adopted the same parameters as obtained by
Kiselev [26], while for pure carbon dioxide all system-dependent
parameters have been found from a fit of Egs. (70)-(74) to the experi-
mental P, p, T data obtained by Wagner and co-workers [38, 39], by
Michels and Michels [40], by Holste et al. [41], and by Fenghour et al.
[42]. The coefficients 7,, which determine the temperature behavior of the
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Table 1.  System-Dependent Constants for Mixtures of Carbon Dioxide and Ethanc

k,, CO, k;. CaHq k9 mixtures

Critical amplitudes

k 1.2245 1.2015 2.9683
o, —0.922t 0.2977 — 14507

a 22.0281 17.779 —161.25
9 —6.0906 2.9728 4902.1

¢y 6.6229 12.776 0

3 —11.773 —18.125 —39728

& 12,122 1.1248 4900.6

Crossover pdarameter

g 0.1477 1.3869 1100.5

Background coellicients

A, —7.0198 —6.4155 16.762
A4, 19.138 20.847 — 15325

Ay 1.8125 32112 0

nm, 0 0 —0.62963
Amy=my —nmy, 8.5218
s —10.094 —18.136 1343.5

niy 3.1208 —0.1729 1209.2

my 0.5476 0.1176 0

Molar mass

g-mol ! 44.01 30.069

specific heat capacity at the critical isochore, were found from a fit to the
experimental C, data obtained by Magee and Ely [43]. The values of all
system-dependent constant for pure carbon dioxide and ethane are listed
in Table II. A comparison with the experimental data is shown in Figs. 1
and 2. Good agreement between experimental and calculated values of the
pressure and the specific heat capacity is observed in the range of
temperatures and densities bounded by

0995T.<T<14T,, 0.35p. < p<1.65p, (84)
To determine the system-dependent parameters in the crossover equa-

tion for carbon dioxide and ethane mixtures, we used the following
experimental information:
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Fig. 1. Percentage deviations of the experimental pressures obtained by
Wagner and co-workers [38, 39] (open triangles). by Michels and Michels
[40] (filled triangles), by Holste et al. [41] (open squares), and by Fenghour
and co-workers [42] (filled circles) from values calculated with the crossover
equation ol state.

co,

JaY plp=L 138
v p/p=1.313
[ ] pip=1.515

0'9300 310 320 330
T, K

Fig. 2. The isochoric specific heat capacity C, of carbon dioxide at
densities p=1.138p,., p=1313p., and p=1515p, as a function of
temperature. The symbols indicate the experimental data obtained by
Magee and Ely [43] and the curves represent values calculated with the
crossover model.
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(i) experimental P—p—T-x data obtained by Weber [44] for three
concentrations (0.26022, 0.50755, and 0.74834 mol fractions of
ethane);

(1) experimental P—p—T—x data obtained by Lau [25] for four con-
centrations (0.09633, 0.26022, 0.50755, and 0.74834 mol fractions
of ethane); and

(i) experimental specific heat capacities obtained by Magee [24]
for three concentrations (0.26022, 0.50755, and 0.74834 mol
fractions of ethane).

The values of the coefficients T, p;, and P, in Egs. (76)—(78) for the
critical parameters, as well as the mixing coefficients k'’ in the crossover
equation of state, were determined from a fit to all sets of experimental
P—p-T-x and specific heat capacities data simultaneously. As for pure
fluids, we used the experimental data in the one-phase region only at tem-
peratures 7> 0.995T(x). The values of the coefficients k!!’ are presented in
Table 11, and the values of the coefficients T, p,, and P, for the critical
parameters are listed in Table II1

A comparison of the experimental P-p-T—x and C, . data with the
results of the calculations is shown in Figs. 3 and 4. One can see that in the
range of temperatures 0.9957 (x) < T<125T(x) and densities 0.4p (x) <
p< l6pfx), the crossover equation gives a good representation of the
experimental P-p-T-x and C, . data.

Table IT. Critical-Line Parameters for Mixtures of Carbon Dioxide and Ethane

Critical Critical Critical
temperature (K) density (mol-L~") pressure (MPa)
Pure CO,
T =304.136 Peo=10.625 P.,=13773
CO, +C,H,
T,= —54.441 po= —1.4657 P,=13773
T,=—15715 pi=—39207x 10" P = —1.7142
T,=4.4935 pa= —17.0024 %10 P,= —1.5064
T,=10.870 pa= —2.7615x 10" Py= —49367x 10"
T,= —14019x 1072 pa= —3.5348x 107" P,=99349x 10!
Pure C,H,

T, =305.322 o = 6.8701 P., =48718
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Fig. 3. Percentage deviations of experimental pressures for carbon dioxide and
ethane mixtures from values calculated with the crossover equation of state at
various concentrations of ethane. The filled symbols indicate the experimental
data obtained by Weber [44]. the open symbols correspond to the experimental
data obtained by Lau [25], and pluses represent the values of densities
calculated with the NIST14 program [46] at pressures and temperatures corre-
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p/p,

sponding to the experimental specific heat capacity data of Magee [24].
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Even though all adjustable parameters have been found from a fit of
Eqgs. (70)—(72) to the experimental data in the one-phase region, we can
also extrapolate our crossover model to represent the thermodynamic sur-
face of carbon dioxide and ethane mixtures in the two-phase region down
to temperatures about 10-15% below the critical temperatures. We applied
our crossover model to calculate the thermodynamic properties in the
two-phase region near the critical locus. For a comparison of our calcula-
tions with experimental data the following experimental information was

used:

(1)
(i)
(iif)
(v)

experimental P — x data of Ohgaki and Katayama [47],
experimental P — x data of Brown et al. [48], and

experimental P — x data of Wei et al. [49].

experimental P — x data of Fredenslund and Mollerup [45],
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Fig. 4. The isochoric specific heat capacity €, , of carbon dioxide and ethane mixtures at
concentrations x = 0.74834, x =0.50755, and x =0.26622 mo! {raction of ethane as a function
of temperature. The filled symbols indicate the cxperimental data obtained by Magee [24].
and the open symbols represent values calculated with the crossover model.

A comparison between the experimental data and the values calculated
from our crossover model is shown in Fig. 5. Good agreement between
experimental data and calculated values is observed down to a temperature
of 263.15 K. Thus one can see that our new crossover equation of state for
carbon dioxide and ethane mixtures is capable of representing the
experimental data over a larger range of temperatures and densities than
the crossover equation obtained earlier by Jin et al. [22, 23].

5. REGULAR PARTS OF THE TRANSPORT COEFFICIENTS

Equations (48) and (42)—(44) for the transport coeflicients in a binary
mixture except the thermodynamic derivatives u .,y and specific heat
capacity C, . contain also the viscosity and the regular (background) parts
of the kinetic coefficients. The viscosity » in these equations represents a
high-frequency shear viscosity which is an analytic function of the tem-
perature, the density, and the concentration. In the present work, as in our
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CO+C,Hg

- -~ critical locus
®  Ohgaki

v Wei et al.

A  Fredenslund
| | Brown et al.

. 298.15K

P, MPa

00 01 02 03 04 05 06 07 08 09 10
x, mol. fr. C,Hg

Fig. 5. The pressure-composition diagram for carbon dioxide and
ethane mixtures. The symbols indicate experimental data obtained by
Fredenslund and Mollerup [45]. by Ohgaki and Katayama [47]. by
Brown et al. [48]. and by Wei et al. [49]. The filled symbols indicate
saturated liquid data, and the open symbols represent saturated vapor
data. The dashed curve represents the critical locus, and the solid curves
represent values calculated with the crossover model.

previous papers [ 15-17], we used for the shear viscosity a corresponding-
states correlation in the form

T )]'”(Tp[T“)]”’ I~ ’71 )Tp[TU)]l(w i i
’7( p1' \/—[P”)],x ( ) \/E[P( )].,] mix Ti\(‘
(85)

where M, is a molecular mass of a mixture, T, and P,, are to be deter-
mined from the Prausnitz and Gunn mixing rules [ 50, 51]

=Y x, T, P,=RT,, Z\'Z"’/ZI/;—;j) (86)
i=1 i=1 i=

and the critical compressibility factor Z\"" = P!'/Rp'T". The super-
script i =1 corresponds to pure carbon dioxide and /=2 to pure ethane,
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(18]

respectively. The viscosities #''' and #'® of the pure components are

written as
n'NT, p)=n (T +nllp)  (i=1,2) (87)

where #{(T) are the viscosities of the pure components in the limit p — 0,
and ') (p) are the density-dependent excess viscosities [11, 13, 52]

P\
nadp)= ), '7"’( (,,> (88)
k=1 Pe
There are no experimental data or any theoretical prediction for the
dependencies of the kinetic coefficients & and J on the temperature, the
density, and the concentration far away from the critical point, where these
coefficients tend to their background parts &, and Eb, respectively. It is
known only that even in the ideal-gas limit the binary diffusion coefficient
D and the thermal-diffusion coefficient D, related to the kinetic coef-
ficients &, and Zfb by Egs. (60) and (61), are complex functions of the
temperature, concentration, and molecular masses [53]. The primary con-
centration dependence of these coefficients in the ideal-gas hmit and in the
dilute solutions is given by ~ x{1 —x). The background parts of the kinetic
coefficients & and f can be presented in the form [16, 17]

X =&(](Ta x)
6

k1l
+x(1—=x) Y <pﬁ> [ota oo (1 —2x) + oy, o(1—2x)°]  (89)
Eh:/}'O(T’x)
6 k+t
x1-x) T (L) fut B (12200 + fa s 1=20°1 (90)

k=1 c

where the ideal-gas parts of the kinetic coefficients are given by

D, M?
ao—% x(1 —x) (91)

EO=R&0<ﬁl+xﬂz—lnliX> (92)

Here «, and B, (k>=1) are system-dependent coefficients, and D, is the
binary diffusion coefficient in the limit p — 0. In practice we used for D, an
empirical correlation proposed by Fuller et al. [ 54, 55],
10-7Tl.75[(M _{_1‘17 /M M_)]l/z
PUZ 0)&o, +(Z )&,

Dy= (93)
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where T is in K, P in atm, and D, in m?-s~'. To determine 3 v the values
of the atomic diffusion volumes

<Zv> 269, <zu> ~377 (94)
co, C,H,

were used. The coefficients a, can be found from fitting the crossover equa-
tion (42) together with Egs. (60) and (89) to the experimental binary diffu-
sion coefficients far away from the critical point. Unfortunately, we do not
have these data for carbon dioxide and ethane mixtures. Therefore we
generated them with the empirical correlation proposed by Leffler and
Gullinan for binary fluid mixtures [ 56].

Dy =(D%,n?y= (DY 'ty (95)

where x, and x, are the molar fractions of the components, and the dilute-
solution binary diffusion coefficients DY, and DY, were calculated with an
empirical modification of the Stokes-Einstein equation for the diffusion

coefficient proposed by Lusis and Ratcliff [ 57],

8.52-101°T A

D%:—”WT{I.4O+<#> :l (96)
J 4

Here Tis in K, 7 in ¢P, and D} in m?-s~', ¥;, and V, (in cm’- mol ')

are the molar volumes of components at their normal boiling temperatures.

In practice, we used

Vo, =55.024, Ve, =37.321 (97)

where for CO, the value of the molar volume of liquid carbon dioxide at
the triple point was taken. The values found for the coefficients a, we then
used to determine the coefficients f,. The coefficients 5, in Eq. (50) were
found from fitting Eqs. (43) and (63) to the experimental thermal-diffusion
ratio data obtained by Walther [58]. The thermodynamic properties for
carbon dioxide and ethane mixtures were calculated from the crossover
equation of state obtained above. The correlation length & is given by
Eq. (45), where for the bare correlation length &,, the cutoff parameter ¢,
and /,, we used simple linear approximations,

o= (1 —x)+EPx (98)
1 1
q[;[:@(l—x)—{-'&?.x (99)

Iy=14(1 — x) +12x (100)
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03 60%CO,+40%C,Hg
( T=305.15 K

s 1 1 . I I i i '

4 6 8 10 12 14 16 18
P, mol-L"!

Fig. 6. The thermal diffusion ratio of the carbon dioxide and ethane mixture
at temperature T=305.15 K and concentration x =0.4 mol traction ol cthane.
The symbols indicate experimental data obtained by Walther [58] and the
curve represents values calculated with the crossover model.

The parameter /, can be assumed to be the average distance between par-
ticles and, in principle, can be considered as an additional adjustable
parameter of our model. In the present work, in calculating /,, for sim-
plicity we set

1 =[] =2 (101)
where for the system-dependent parameters &', we adopt the values for

pure carbon dioxide (i=1) and ethane (i=2) obtained by Olchowy and
Sengers [13].

¢!"'=0.15nm £ =0.19 nm (102)

Table IV. Background Thermal Conductivity Coeflicients
for the Pure Components (4, in W.-m~". K ')

Carbon dioxide Ethane
A N=2329%10"7 MP=2298x 10" 7
A =2643 %1071 A =9897 x 1077

A0 =4950%10 7 A Z3503% 10
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The coefficients «, and f, found in this way are reproduced in Table IV.
The values of the coefficients «, and f, depend strongly on the equation of
state used for the calculation of the thermodynamic derivatives y, and u
in Egs. (60) and (63); therefore, they differ from the corresponding values
obtained earlier by Kiselev and Povodyrev [16, 17] with the crossover
equation of state of Jin et al. [22, 23].

The results of comparison with thermal-diffusion ratio data for the
carbon dioxide and ethane mixture is shown in Fig. 6. Good agreement
between calculated values and experimental data of Walther [58] for the
thermal diffusion ratio is observed. As one can see from Fig. 6, the thermal-
diffusion ratio increases in the critical region and reaches the maxima at the
density p ~8.32 mol-L ', which is close to the critical density at this
composition.

6. COMPARISON WITH EXPERIMENTAL
THERMAL-CONDUCTIVITY DATA

In order to compare the crossover model with experimental thermal-
conductivity data, in addition to the equation of state and expressions for
the background transport coefficients &, B, and n,. one needs the back-
ground part 7, of the kinetic coefficient j. This quantity can be written in
the form [16, 17]

6 k
o =Tl T\ X)+ 4201 = x) + A7 X +x(1=x) 3 (a1 +72) <p£>

k=1 S

(103)

where 7, determines the ideal-gas limit of 7,, 44" and 44 define the
nonideal parts of the thermal conductivity 4, in the limits of the pure
components, and the third part determines the nonideal part of the kinetic
coefficient 7, in binary mixtures. An expression for j, in accordance with
Eq. (52) reads

BT, x)

ol T, x)= j~(|( T, x)+ TOZ(,( T x)

(104)
where for A,(7T,x) we use a simple expression proposed by Wassilijeva
[59].

(1-x) 4T xAZ(T)
(1=x)+x4,, x+(1—-x)A4,

AT, x)= (105)
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Table V. The Background Kinetic Coeflicients («, in kg-s-m~", f, Dimensionless, ff, in
kgem™'.s "K'y inW.m 'K

Coeflicient for d,, Coellicient for f, Coeflicient for jy,
%, 46125% 10" I 34721 74 —37435x 10!
o 6.6796x 10" S —1.0450 x 10 % ¥s 4.6099 x 10!
s —25779x 10" " Be 9.1371x 1077 ¥s 12749 x 10~
P —27020x 10" Bis —1.7185x 107 Yo 1.3688 x 1072
Ay 26450 x 107"2 Brs 1.4604 x 10~ Y10 —9.5232x107*
%o 25930 % 10~ "2

with the Lindsay and Bromley [ 60] modification for 4,, and A,;:

() 3/4 1,242
A,,=1{1+[" (T,0)<M2> T+S,] }T+S,3

2 =3 "(T.00\M,) T+5, T+5,

’ | | (106)
) _1{1+[17'-’(T,0)<M1>“T+S2 “2}2T+S,3
2l_4 n(l)(T,O) M: T+S| T+Sz

Here A{’=(i=1,2) is the thermal conductivity in the ideal-gas limit,
S, =157, §,=1.5T} and S,,=./S,S, are Sutherlend constants, and

T =19165K, T'2=28452K (107)

are the normal boiling temperatures of the pure components.* In the limits
of the pure components &, = ff, =0 [see Eqs. (89)-(92)], and Eq. (48) for
the thermal conductivity in binary mixtures with account of Eq. (103} is
transformed into the crossover equation for the thermal conductivity of
one-component fluids:

szTpCPQ
6mné

where 1{(T, p) is the background part of the thermal conductivity of pure
components. As noted earlier by Sengers and co-workers [12, 13, 62], the
excess functions 44 = A" — A4 can be treated as functions of the density
only, so that

A (qul) + AVAT, p) (108)

‘
iL"‘(T,p>=Az;"(T>+ZA‘;’(ﬁ) (109)

[

4 For pure CO, the value of the triple-point temperature was used.
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with
/l‘(,”(T)=ﬁ/Z AT (110)
i

For the coefficients A{;’ we adopt the same values as used by Olchowy and
Sengers [13] for pure carbon dioxide and ethane, but the coefficients 1"
have been determined from a fit of the crossover equation (108) to the
experimental data for the thermal conductivity of carbon dioxide obtained
by Michels et al. [61] and the thermal conductivity of ethane obtained by
Mostert et al. [62]. The coefficients 1! for carbon dioxide and ethane are
presented in Table IV. The results of fitting the crossover equation (108) to
the experimental thermal conductivity data for CO, and C,H, are shown
in Figs. 7 and 8. Good agreement between the calculated values of the
thermal conductivity and the experimental data is observed.

In order to reproduce a global thermal-conductivity surface for the
mixtures of carbon dioxide and ethane over the entire range of concentra-
tions we need to know the coefficients y,.. Since these coefficients determine
the concentration and density dependence of the regular part of the
thermal conductivity [see Eqs. (52) and (103)], we could in principle find
them from fitting the crossover equation to the experimental thermal-
conductivity data far away from the critical point. Since we do not have
such data for carbon dioxide and ethane mixtures, in the present work the
coefficients y, in Eq. (103) have been found from a fit of the crossover
equation (48) to the experimental thermal-conductivity data for carbon
dioxide and ethane mixtures in the critical region obtained by Mostert
[63]. The coefficients y, are presented in Table IV. We found that the
values of the critical densities and temperatures for the carbon dioxide and
ethane mixtures obtained from this equation are essentially different from
the values reported by Mostert { 63]. Therefore we shifted the temperatures
associated with the thermal conductivity data of Mostert [63] by 4T =
+0260 K at x=026, AT=—0478 K at x=0.50, 4T=—0445 K at
x=0.74, and AT = —0.463 K at x=0.75. At the near-critical isochores for
the concentrations x =074 and x=0.75 mol fraction of ethane, sharp
maxima of the experimental thermal-conductivity data of Mostert and
Sengers [63, 64] are observed. These maxima of the thermal conductivity
are extremely narrow and sharp even in the logarithmic temperature scale,
and they are observed in the one-phase region at temperatures 7 1073,
where all crossover functions are equal to unity. Such sharp peaks of the
thermal conductivity in the one-phase region near the plait points of binary
mixtures cannot be explained by the renormalization of the thermal conduc-
tivity of a binary mixture near the critical point. At these concentrations
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Fig. 7. The thermal conductivity of carbon dioxide as a function of the
density along isotherms. The symbals indicate experimental data obtained
by Michels et al. {617, und the curves represent values calculated with the
crassover model,
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Fig. 8. The thermal conductivity of ethanc as & function of the deusity
along isotherms. The symbals indicate experimental data obtained by
Mostert [63]. and the curves represent values calcututed with the crossover
model.
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Fig. 9. The thermal conductivity of the carbon dioxide and ethane mixturc at
concentrations ¥ =0.75 and x=0.74 mol [raction of ethane as a function of the
temperature. The symbols indicate experimental data obtained by Mostert [63]
and the curves represent values calculated with the crossover model.
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Fig. 10. The thermal conductivity of the carbon dioxide and ethane mixture at
concentrations x =0.50 and x = 0.26 mol fraction of ethane as a function of the
temperature. The symbols indicate experimental data obtained by Mostert [63]
and the curves represent values calculated with the crossover model.
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the temperature shift arrives the value 4T=0.4 K, which corresponds to
the dimensionless temperature At ~ 10~*. Thus, a reasonable explanation
of the experimentally observed peaks of the thermal conductivity at
concentrations x=0.74 and x=0.75 mol fraction of ethane is that they
correspond to the thermal conductivity jump in the liquid—vapor phase
transition at the near-critical isochores as discussed by Luettmer-
Strathmann and Sengers [21]. Therefore, we excluded from the calcula-
tions thermal-conductivity data apparently corresponding to the two-phase
region. The actual thermal-conductivity values for carbon dioxide and
ethane mixtures at various concentrations and densities are plotted as a
function of temperature in Figs. 9 and 10. Without the two-phase region
data the crossover model gives a satisfactory representation of the
experimental thermal conductivity of carbon dioxide and ethane mixtures
over a wide range of temperatures and densities around the critical locus.
The crossover model reproduces the experimental thermal conductivity
data for carbon dioxide and ethane mixtures with an accuracy comparable
with the accuracy achieved for pure ethane. We have to note that our
crossover model, except the coefficients y,, which determine the regular
part of the thermal conductivity far away from the critical point, does not
contain any adjustable parameters. The coefficients «, and f, have been
found from a fit of our crossover model to the thermal-diffusion ratio data
and these values have been used in further calculations; therefore, in Figs. 9
and 10 a comparison between the predictions by the crossover model values
of the thermal conductivity in the critical region and the experi mental data
are presented. The values of the pressure P, of the specific heat Cp , and
of the thermal conductivity A, calculated at some selected concentrations,

Table VI. Table for Computer Verification

Mole fraction Temperature  Density Pressure Cp., A
of C,H, (K) (mol-L~%)  (MPa) (J.g=" K™") (mW-m~ 'K
0.260 293.00 9.318 6.3074 19275 % 10° 499.5867
0.260 295.00 9.318 6.6032 3.1510 x 10° 86.4668
0.260 297.00 9.318 6.9010 1.4149 x 10° 67.1967
0.500 292.00 8.381 5.8098 3.4070 x 10* 104.9525
0.500 295.00 8.381 6.2007 1.1509 x 10* 70.3846
0.500 298.00 8.381 6.5940 6.6385 x 10° 62.6211
0.740 296.00 7.600 5.3379 22159 x 10° 416.5296
0.740 299.00 7.600 5.6818 1.0556 x 10° 78.8371
0.740 302.00 7.600 6.0293 6.3908 x 10* 70.0329
0.750 298.00 7.570 5.5170 14155 x 10* 89.3309

0.750 308.00 7.570 6.6730 3.6388 x 10° 64.4508
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temperatures, and densities, are presented in Table VI as an aid for com-
puter-program verification.

7. DISCUSSION

The thermodynamic and transport properties of fluids and fluid
mixtures exhibit singular behavior near the critical point that cannot be
described by regular equations. The asymptotic equations for the transport
coefficients in binary mixtures are valid only in the near-vicinity of the criti-
cal point. In order to describe the nonasymptotic behavior of the transport
properties in binary mixtures, the crossover to the regular classical
behavior of the kinetic coefficients has to be considered. Simple crossover
equations for these coefficients have been obtained earlier by Kiselev and
Kulikov [15]. In the present paper we develop, on the basis of the
decoupled-mode theory, an extended crossover model for the transport
coefficients occurring in diffusion, heat conduction, and their cross-
processes in fluid binary mixtures near the plait points. The crossover func-
tions for the kinetic coefficients in a binary mixture have a simple form and
coincide with the crossover function for the thermal conductivity in the
one-component limit.

The crossover equations for the thermal-conductivity and the thermal
diffusion ratio in binary mixtures near the vapor-liquid critical line have
been considered. The crossover behavior of the transport coefficients of a
binary mixture along the critical isochore is determined by the charac-
teristic temperature 7. In the temperature range tp <1< 1 the thermal
conductivity of a binary mixture behaves as the thermal conductivity of a
pure fluid. Asymptotically close to the critical point at 7 < 7, the thermal
conductivity of a binary mixture is renormalized and, unlike the thermal
conductivity of a pure fluid, does not diverge and tends to its critical back-
ground value in the critical point. At temperatures t ~ 7, the thermal con-
ductivity of binary mixtures is a monotonic function of the temperature
and exhibits a crossover from one-component-like behavior to the critical
background. These predictions for the thermal conductivity are consistent
with the results of a theoretical analysis performed earlier by Onuki [6].
Our estimates of the value of the characteristic temperature t, with
Eq. (56) give that, for carbon dioxide and ethane mixtures, 7, =8.2x107°
at x=026 (azeotropic mixture), Tp=17x10"°% at x=040, 1p=
12%107% at x=0.50, and 7,,=6.3x 1077 at x=0.75. This means that in
the critical region at temperatures 107°-107°> <7 <1 the thermal con-
ductivity of carbon dioxide and ethane mixtures exhibits a one-component-
like behavior (57). The renormalization of the thermal conductivity
described by Eq. (58) and the renormalization of the thermal-diffusion
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ratio as given by Eq. (65) in these mixtures can be observed only at tem-
peratures < 107° which makes it very complicated for experimental
observation. We applied our crossover model to a description of the
experimental thermal-diffusion ratio data of Walther [58] for the carbon
dioxide and ethane mixture and the experimental thermal-conductivity
data obtained by Mostert [63]. The results of our calculations for the
thermal conductivity (see Figs. 9 and 10) confirm this theoretical conclu-
sion. An asymptotic temperature behavior of the thermal-diffusion ratio
calculated with the crossover equation, Eq. (63). along the critical
isochores at composition x =0.4 mol fraction of ethane mixtures is shown
in Fig. 11. The renormalization of Eq. (58) for the thermal-diffusion ratio
is really observed at temperatures 7 < 10°

It is also interesting to compare the result of our calculations for
carbon dioxide and ethane mixtures with the results obtained by Luettmer-
Strathmann and Sengers [21]. In our approach the crossover function
2.,=0, which corresponds to the direct calculations of Luettmer-
Strathmann and Sengers [2]]. A comparison between our crossover func-
tions 2, and 2 and the corresponding crossover functions £_. and Qg
introduced by Luettmer-Strathmann and Sengers [21] 1s shown in Fig. 12.

60%CO,*+40%C,Hg

_\lfT=Const v

ky=Const t77

0 e . L .
-9 -8 7 6 5 -4 -3 -2

log ©(x)

Fig. 11. The thermal-diffusion ratio of the carbon dioxide and ethane
mixture as a function of temperature along the critical isochore at the
concentration x=0.4 mol fraction of ethane. The solid curve represents
the values calculated with the crossover model, the dashed curve
corresponds to the asymptotic behavior at 1 <€ 1)5, and the dotied-dashed
curve corresponds to the asymptotic behavior at 7, €<t < 1.
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Fig. 12. The crossover functions for the transport Coeflicients of the
carbon dioxide and ethane mixture at concentration x =0.75 mol frac-
tion of ethane as a function of the dimensionless correlation length along
the critical isochore.

The functions £, and 2. exhibit qualitatively the same behavior; however,
the crossover function Q4. unlike our crossover function €2, does not tend
to unity in the asymptotic critical region, but Q¢s — 0.25 at £ — o (r—0).

Quantitatively the calculations of Luettmer-Strathmann and Sengers
[21] for carbon dioxide and ethane mixtures give a slightly better
representation of the thermal conductivity at separate isochores far away
from the critical point. In order to describe the thermal-conductivity sur-
face of binary mixtures in a wide region around the critical locus better, we
have to use more coefficients in Egs. (89), (90), and (103) than we used in
the present paper. However, for that purpose we need more detailed
experimental data for the thermal conductivity and diffusion coefficients of
carbon dioxide and ethane mixtures.

APPENDIX

Our aim is to obtain a crossover expression for the kinetic coefficient
& with account of the next term oc k* in the effective Hamiltonian of the
system. With this in mind, we consider the Hamiltonian in the form

H=1](at¢® +c(Vo)* +ci(dg)) yar=32( (at+ck*+ ik loel” (A1)
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The static correlation function in this case reads

kgT kg T(Ox/0p) p. 1

G(k)=log*> ot k4 kT p[L+ (kO + (kD7)

(A.2)

where the correlation length in this approximation is given by

=592 (14 /T a0 o) (A3)

and

P=9 (1 - /T a0 ) (A4)

is a new noncritical size which remains finite at the critical point (/- /; at
Eoz = ™). Here I3=c?/c,, and &q, =./cp ~'(0x/0u) p. 1 is the Ornstein—
Zernike correlation length. Substitution of Eq. (A.2) into Eq. (19) and
integration over all £ up to the cutoff wave number ¢, yield

kgTp (9x/0u)p 1

Adad =
*= 6y E(1—(1)2))

2qp. & D) (A.5)

where the new crossover function

2
Q""qo. & 1) == {arctan(gp¢) — (//2) arctan(gp) + 22(gp, &, D} (A6)
with

7 ﬁ,[ 1 V240l

Qg & 1) = '

S DT @R e @ F
_ ! arctan \/EqDél J
JEP—(@-P)F T [ErP - (=P F

(A7)
and
Ay gl 21+ )
F= [1— o A8
/ (& —1%)? A
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The validity of these expressions is restricted by the obvious condition
F? >0 or, equivalently,

(&~ P)?~4ypgplPE(1+£)>0 (A9)

A solution of this inequality with the reasonable estimates yp ~ 1, [~/
and gpl, ~ 1 gives (//£) £0.2. In this region we can replace the function F
on its expansion in powers of the small parameter (//£):

F=1-2ypqpll/8) +0(1%/E%) (A.10)

and consider the correlation length & and the noncritical size / in the
critical limit only (¢ =¢4,, [=1,). Then Eq. (A.7) for the crossover func-
tion Q' reduces to

Q(gp, & D) = (Koz) arctan 9ol
V1= yoa0llfec?  V1-yoaoélfeor)
— ! arctan 9o¢
Vv 1+quDé vV 1‘*‘}’0‘105
! 1 dploz
foz arctan(qp/) — m arctan m
+0(1°/8%) (A.11)

with renormalized correlation length,

¢ =éoz(1—(f’—(jz>2) (A12)

Substituting Eq. (A.11) into Eq. (A.6) gives

2 doloz
QY )(ql)f) =— {arctan (9p€oz) ——F——=—=arctan —.}
n V1+ypgpé V14 ypgpé
(A.13)

Equation (A.13) was obtained under the condition (1/€) < 1; however,
unlike Egs. (A.6)~(A.8), it can be extrapolated also in the region where
(l/f) > 1. As one can see from Eq. (A.13), far away from the critical point
Eoy =1y, £—0, and the crossover function Q. — 0. If we demand that
not only the crossover function Q" but also its first derivative tends to
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zero in this region, we can replace &, in Eq. (A.13) by the renormalized
correlation length & This replacement does not change the crossover func-
tion in the critical region where &, ~¢ and provides the correct
asymptotic of this function in the case &, ~/,. Finally, Egs. (A.5) and
(A.6) can be written in the form

5= Ko TPOXIO) r QM gpé) (A.14)
6nné
with
Q'“(ql)g)—7 {arctdn(q.)f ————==arctan q,—)f} (A.15)
V14 ypgn¢ V1t ypqné

One can see that Egs. (A.14) and (A.15) coincide with Egs. (23) and (27),
respectively, with account of the replacement ¢ by the renormalized
correlation length ¢.
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